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ABSTRACT

Improved control of gas turbine propulsion plants could

offer the Navy increased economic, maintenance, and tactical

benefits. This thesis provides methods of steady state and

dynamic computer modelling, as well as two non-proprietary

control design methods. The classical proportional integral

(PI) regulator design method and the modern linear quadratic

regulator (LQR) controller design method are used to demon-

strate a base for Navy redesign of existing gas turbine

propulsion plant control systems. A comparison of the PI

and LQR designs is conducted. In addition, a real or near-

real time dynamic computer simulation is presented that has

immediate application in the areas of model-based control

and plant health monitoring.
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I. INTRODUCTION

Many modern surface Naval marine propulsion plants are a

combination of gas turbine engines with controllable

reversible pitch propellers. This presents the problem of

matching the engine RPM to the most efficient pitch which

has been accomplished through the use of an integrated

throttle control (ITC). Figure 1 shows a block diagram of a

typical ITC control scheme.

The implementation technology for Figure 1 is well over

20 years old and its limitations are now well defined.

Today, technology exists that will allow the antiquated

analog mechanisms and current computerized systems to be

replaced by smaller more reliable digital controls and

hardware. This approach suggests that the following

benefits could be realized:

(1) Reduction of maintenance "nightmares" that develop
due to the intricacy and number of small parts in
components such as mechanical fuel governors;

(2) More reliable and compact circuitry would modify
present hardware such as the Free Standing Electronic
Enclosure, propulsion and electrical control
consoles, and current engine health monitoring
equipment;

(3) Advances in the ability to model and simulate gas
turbine performance would allow plant performance to
be significantly improved, thereby increasing plant
efficiency and translating to lower operating costs;

(4) New techniques in engine health monitoring and
analysis provide essential real time data on plant
performance to the operators, allowing better and
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more rapid evaluation and response to a potential or
actual engineering casualty;

(5) More compatibility between control systems could be
achieved, thereby reducing the number of different
repair parts that must be stocked in the naval supply
system. More commonality would also streamline the
training process of personnel responsible for
maintaining and operating the systems;

(6) Inherent flexibility through reprogramming of
computer-based controls would pave the way for future
developments.

A. CONTROLLER BACKGROUND

During the late seventies and early eighties the marine

gas turbine industry hotly debated the pros and cons of

analog vs. digital control to implement integrated throttle

control [Ref. 1]. The advocates of analog control were of

the opinion that this technology was reliable and could

perform all necessary calculations required for effective

plant control. It was felt that little would be gained in

the way of reduction of component count or system reliabili-

ty through digital systems. This thought process led Rolls

Royce to choose analog systems for warship controls, and led

General Electric to a similar conclusion for the main fuel

control on the LM-2500.

The digital advocates on the other hand, had the

foresight to realize that advances in technology would be

more easily implemented in a digital base, and that

reliability would indeed be as good, if not better than,

analog systems. With the advent of the microprocessor, the

component count can indeed be reduced with a carefully

3



executed design process. This was demonstrated by the

aviation community first on the F100 engine [Ref. 2]. A

natural progression would be for the marine gas turbine

community to follow suit. It must be realized that some

analog fuel system control components will probably always

be required, particularly in the sensing and actuation

areas.

Perhaps the most compelling reason today to convert to

digital control is the advent of intelligent control. In

this approach, it is possible to control a large quantity of

measured and unmeasured variables with a limited amount of

operator intervention to meet the dynamic needs of the

operator.

Typically, a good control design approach consists of

eleven steps. These steps contain three "feedback loops"

which provide the means for modification or improvement

should the designer desire. This control design approach is

as follows:

(1) Specifications for control design;

(2) Evaluation of plant function;

(3) Plant mathematical modeling;

(4) Plant model validation--open loop simulation;

(5) Selection of control strategy;

(6) Selection of actuators, sensors;

(7) Dynamic modeling of actuators, sensors;

(8) Selection of controller action;

4



(9) Theoretical controller design;

(10) Controller validation--closed loop simulation;

(11) Prototype.

The design feedback loops exist between steps 4 and 3,

between steps 10 and 8, and between steps 10 and 5.

Utilization of computer-aided design techniques in the

design, validation, and optimization of control schemes

provides an efficient and economical method for selecting

the most suitable candidate for hardware development.

Prudent selection of designs is essential considering the

complexity and large capital expenditure incurred as the

design progresses from the conceptual phase to its final

form. Inherent in this approach is the need for evaluation

and modelling of gas turbine performance (step 3). Conse-

quently, while this thesis is dealing with marine gas

turbines, much early work was done in the area of aviation

gas turbine modeling and control. We begin with a review of

these efforts. Chapter II is a review of previous recent

work in gas turbine modelling and control. Chapter III is a

review of work previously performed at the Naval Postgradu-

ate School. Chapters IV and V detail the steady state and

dynamic simulations of this work. Chapter VI contains the

design methods for a classical proportional integral (PI)

regulator and a modern linear quadratic (LQR) regulator.

Also in Chapter VI the controller designs are compared for

5
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operation in a simulated sea state. Conclusions and

recommendations make up Chapter VII.

6
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II. PREVIOUS GAS TURBINE MODELLING AND CONTROL

A. EARLY COMPUTER MODELS

Gas turbines in use today for marine propulsion are for

the most part derivatives of aviation gas turbine engines

that have been "marinized" for use at sea. As one would

expect, several computer simulations were developed to

evaluate and predict system performance. The early

simulations were developed by the aviation industry and

provided a substantial data base for development of more

advanced computer models. A short summary of some of the

major early aircraft simulations is given below [Ref. 3):

(1) SMOTE--Developed in 1967 by the Turbine Engine
Division of the U.S. Air Force Propulsion Laboratory
(AFAPL), Wright-Patterson AFB, Ohio. It us capable
of calculating steady-state design and off design
performance of a two-spool turbofan engine.

(2) GENENG--Developed in 1972 by NASA's Lewis Research
Center (LeRC), Cleveland, Ohio. Its purpose is to
improve the versatility of SMOTE. Steady-state
design and off-design performance of one- and two-
spool turbojets can be calculated as well as the two-
spool turbofan.

(3) GENENG II--Derivative of GENENG, it calculates
steady-state performance of two- or three-spool
turbofan engines with as many as three nozzles.

(4) NEPCOMP--Developed in 1974 by the Naval Air
Development Center (NADC), Warminister, Pennsylvania.
The flexibility inherent to NEPCOMP allows for
calculation of steady-state performance of gas-
turbine engines with multiple spools, including
turbojets, turbofans, turboshafts, and ramjets.

(5) DYNGEN--Developed in 1975 by LeRC, it combined the
capabilities of GENENG and GENENG II for calculating

7



steady-state performance of gas turbine engines with
multiple spools. The additional capability of
calculating transient performance was also added.

(6) NNEP--Jointly developed in 1975 by NASA, LeRC, and
NADC. This computer code is able to simulate steady-
state design and off design performance of almost any
conceivable gas turbine engine simulation.

As can be seen above, the majority of the early work was

devoted to steady-state simulations. A major shortfall was

a lack of dynamic simulation capability. At this point it

is prudent to shift the emphasis from the work performed by

the aviation industry and concentrate on the contributions

made in the marine gas turbine industry in the area of

dynamic simulation.

B. DYNAMIC COMPUTER MODELS FOR MARINE ENGINE SIMULATION

Engineers at David W. Taylor developed equations to

mathematically model various engine components for a

"building block" approach to modelling [Ref. 3). Once these

were established, a system of common component interface

locations was defined and the locations were numbered.

Equations were then developed for the numbered major gas

turbine components, including compressors, burners,

turbines, and engine load. Dynamic equations were then

developed to describe speed, power balances, mass

accumulation, and energy accumulation.1  An iterative

approach was then utilized to balance the performance

1Information used for this portion of the discussion
only relates to a simulation of a single srool engine
configuration.
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characteristics of the various engine components. A Newton-

Raphson technique was used to achieve convergence. The

results of the simulations yielded good comparisons between

the manufacturer's simulation and the existing experimental

data.

Beginning in the early seventies, the U.S. Navy

initiated The Gas Turbine Ship Propulsion Control Systems

Research and Development Program [Ref. 4]. The Navy chose

Propulsion Dynamics, Incorporated to conduct the program

which was designed to develop a machinery dynamics and

control system data base. The program involved computer

simulations of total propulsion systems, which were

validated by shipboard and model testing. The program

continued into the eighties and was still generating

technical papers as recently as 1986. The program was

successful in developing a theoretical design base for gas

turbine propulsion systems. Major conclusions were drawn in

the following areas [Ref. 5]:

(1) Propulsion systems cycling;

(2) Propeller speed governing;

(3) Gas generator power governing;

(4) Combined Power and Speed Governing.

Based on data obtained during the program, a ship

propulsion control system was devised for use in computer

simulations. The control system was of the classical

integral variety, whose gains were fixed via a "cut and try"

9



method. Linear controller gains were obtained for various

wave conditions and engine speeds, then tabulated and

compared. In a current application the gain is fine tuned

via the "sea state adjust" control found on the propulsion

control consoles aboard DD-963 class destroyers to account

for variations in the load and non-linear propulsion plant.

Figure 1 shows a block diagram of the ship propulsion

control system used. Simulations of this approach tended to

give good results when compared to model and ship generated

data [Ref. 5]. However, the approach generated some

interesting observations regarding a gas turbine engineering

plant's response to seaway- and maneuver-induced unsteady

loading, which are indeed confirmed by the experience of the

author who served as Main Propulsion Assistant aboard a DD-

963 class destroyer. In high seas, gas turbine plants

experience a good deal of engine/propeller cycling due to

constant changes in propeller loading as the ship moves

through the water. A ship configured with two propulsion

shafts experiences a good deal of propeller load variation

during turns, particularly during high speed turns.

Naturally, these conditions cause numerous changes in engine

speed, resulting in engine wear and potential overspeeding

of the engine gas generator should the propulsion load be

lost for some reason. It should be noted at this point that

these two phenomena can be thought of as "disturbances" to

the plant.

10



Returning to general control development, modern control

theory provided the next logical step in controller design.

In this work, state space techniques applied to gas turbines

have yielded positive results. Such state variable methods

allow the control system designer to gain an understanding

of the inherent input cross-channel coupling dynamic

characteristics of the system and to take advantage of

coupling which exists between input and output variables.

In the late seventies students and faculty at the Naval

Postgraduate school applied state space techniques to a

linearized model of an FFG-7 ship propulsion system [Ref.

6]. Dynamic propulsion system equations were developed for

the FFG-7 and then linearized, the appropriate matrices

developed, and the dynamic simulations conducted. The

results demonstrated that the linear model described the

system behavior reasonably well.

Another mathematical model was developed at Tsinghua

University, Beijing, China in the mid-eighties [Ref. 7]. A

three shaft marine gas turbine was modelled and simulated

using state space techniques, and two different numerical

methods were used to obtain convergence. The convergence

methods used were: (1) the varying coefficient method, and

(2) the small deviation method. The difference in methods

lies in the fact that only small system perturbations can be

considered in the latter, while large perturbations can be

considered in the former. In the first method the initial

11
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point of linearization lies in the unsteady regime. The

real beauty of the varying coefficient method is that

transients under large perturbations can be obtained with

sufficient accuracy using linearized equations. Results

from the two simulation techniques were compared and the

varying coefficient method was deemed more accurate.

C. RECENT CONTROL DESIGN TECHNIQUES

There are numerous methods by which one can design a

modern controller for an automatic system. When a state

space approach is taken to design, there are basically two

ways to approach the task: (1) The Pole Placement method,

and (2) The Linear Quadratic Regulator technique (LQR).

The Pole Placement method requires that the location of the

desired system closed loop poles be known. Since the

optimum closed loop poles of a system may not be known

during design, the LQR method is often a better choice. The

LQR method optimizes the design of the controller, based on

the inputs of various matrices and a cost function. The LQR

controller often requires an observer to calculate the

states, it then calculates the error between actual and

desired states and computes the gains such that stability is

guaranteed and the integrated error minimized. (The theory

of this approach will be reviewed in more detail in the

following chapters).

Kidd, Munro, and Winterbone examined the potential of a

digital control scheme designed using LQR state space

12



techniques (Ref. 8]. The plant model was one of a two-

shaft, two-turbine vessel with a combination of a sprint and

a cruise turbine on each shaft coupled to a controllable

reversible pitch propeller via a reduction gear. The

simulations were performed using a FORTRAN IV digital, non-

linear, dynamic computer simulation which included steady

state data for the non-linear propeller and thrust

characteristics. A digital controller was developed using

state space techniques, eventually culminating in a gain-

scheduled multivariable controller which was constructed

from a selection of linear compensator designs. For

comparison purposes a conventional control system was

designed as a yardstick by which to measure the digital

control system. Both controllers were then implemented in

the non-linear ship simulation model. The responses of the

two controllers were compared for several maneuvers and the

multivariable controller demonstrated a much faster speed of

response and less overshoot on propeller-shaft torque

output. The multivariable controller constrained the

propeller well within safe and acceptable operating limits.

The improvements in response of the propulsion plant

improved the ship speed response which resulted in ship

acceleration and stopping time improvements, i.e ship

maneuverability improvements.

LQR controllers have also been designed for the F-401

and F100 aerospace turbofan engines. Figure 2 is a block

13



diagram of the FI00 control model [Ref. 2]. Similar

research was done to apply LQR techniques to the design of a

power turbine governor for a turboshaft engine driving a

helicopter rotor blade [Ref. 9]. In that work, a GE-700

turboshaft engine was modelled using state space methods and

was mathematically coupled to a linear lumped capacitance

model of an articulated rotor blade. The two were then

combined into an overall system matrix and simulated; the

results were compared to a conventional governor's

performance. The performance was increased in the areas of

time response and overshoot in power turbine speed. These

results seem to parallel the results obtained by Kidd,

Munro, and Winterbone, but for a different application.

14
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III. PREVIOUS WORK AT NPS

The plant being considered here is a Boeing Model 502-

6A 175 horsepower gas turbine connected to a Clayton 17-300

water brake dynamometer as shown in Figure 3. The gas

turbine is divided into two separate sections, a gas

generator section and a power output section. The gas

generator is composed of a single entry, single stage

centrifugal compressor connected to a single stage axial

flow high pressure turbine (HPT). Two cross-connected

through-flow type combustion chambers provide an aerodynamic

coupling between the turbine and compressor. An accessory

drive section is geared off the gas generator shaft, and

contains the electric starter, tachometer generator, fuel

pump, governor, and lube oil pump. The power output section

consists of an axial flow free power turbine (FPT), reduc-

tion gearing, and output shaft. The gas generator and power

output sections are connected aerodynamically.

Previous work by Johnson [Ref. 10] (hardware design and

implementation), Herda (Ref. 11] (computer modelling and

simulation), and Miller [Ref. 12] (model testing and

modification), has provided the starting point for the

present work.

The state space model previously developed has been

slightly modified, but remains essentially the same with the

16
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exception of one of the plant inputs. The model for the

present work applies the state space linearization:

x= A*x + B*u (1)

where

x = the state vector,

u = the input vector,

A = the state coefficient matrix,

B = The input coefficient matrix.

The states are defined as gas generator speed (NG),

power turbine/dynamometer speed (NS), and mechanical energy

resulting from fuel combustion (E). The plant inputs are

fuel flow rate (MF) and dynamometer torque (QD).

Perturbations which are the basis for the linearizations

are accomplished by using the equation:

X = X0 + x (2)

where

X0 = the initial value,

x = 6x = the perturbation from the initial value,

X = the current value.

18



All plant state space variables are represented in this

manner. Employing the perturbational variables, the state

space equation becomes:

ng ng mf

ns - A ns + B gd

e e

The elements of the "A" and "B" matrices are calculated

using Taylor series expansions on each plant component,

retaining only first order terms. So, the elements of the

state space "A" and "B" matrices can be written symbolically

as:

all = aNg/;ng a12 = DNg/Dns a13 = 9Ng/ e

a21 = aNs/ang a22 = aNs/Dns a23 = 3Ns/ae

a31 = aE/ang a32 = DE/Dns a33 = D E/ De

bll = 9Ng/amf b12 = DNg/aqd

b21 = aNs/ mf b22 = aNs/3qd

b31 = aE/amf b32 = aE/3qd

Herda developed both steady state and dynamic computer

simulations to describe the behavior of the plant. The

dynamic equations were derived from quadratic curve fits of

steady state data collected during operation of the gas

turbine/dynamometer. Uncorrected variables were used,

primarily because the conditions in the test cell remained

near standard conditions at all times. The modifications to

the computer code to correct for temperature and pressure

19



could easily be added after successful concept validation.

The cause and effect multiport model used for that work is

depicted by Figure 4. It was initially proposed by Johnson,

then expanded by Herda.

It is apparent from the multiport model that the

variable coupling the gas generator and power output

sections was the pressure P4. P4 is both the high pressure

turbine exhaust pressure and the free power turbine inlet

pressure. Herda's steady s model was developed on the

premise that for any operating point there was one fuel flow

rate (MF), one high pressure turbine inlet pressure (P2),

and one high pressure turbine exhaust/free power turbine

inlet pressure (P4). Inputs to the model were gas generator

speed (NG) and dynamometer speed (NS). From these inputs an

initial fuel guess was computed. Convergence to the correct

P2 and P4 was then attempted using a modified Newton-Raphson

algorithm. If the pressures could not be converged, the

fuel estimate was modified using a golden section technique.

These iterations continued until either satisfactory

convergence to specified criteria was obtained (in which

case a torque comparison between the compressor and high

pressure turbine was performed) or convergence failed and no

solution was obtained. If the torque comparison failed to

meet its convergence criteria, the iterations continued as

just described. If satisfactory convergences between the

pressures and torques were obtained, the routine calculated
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the remaining plant variables and the state space "A" and

"B" matrices.

Herda performed limited testing of his steady state

model and was able to obtain some good results, but he did

experience numerical instability and failed convergence in

some instances. Herda's dynamic model was developed using

mainframe dynamic simulation software.

Miller's work focused on solving the numerical

instability problem encountered by Herda. A performance

envelope was developed and additional data obtained for

analysis. Miller made minor modifications to the model and

investigated alternative convergence methods with some

success, but he also encountered numerical instabilities.

A summary of previous work is as follows:

(1) The cause-effect multi-port model worked well to
portray system response;

(2) Computer algorithms derived from the multi-port model
provide a method for linearization and state space
matrix computation based upon steady state experimen-
tal data;

(3) Numerical convergence for the steady state model was
uncertain for portions of the plant operating
envelope; and,

(4) Great accuracy was required in the computation of
steady state plant variables, particularly the
pressure P4.
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IV. STEADY STATE SOLUTION

The ability to obtain a steady state solution at any

point in the operating envelope was prerequisite to the

later dynamic simulation and controller design phases of

this work. The criteria for an acceptable steady state

solution was to achieve a torque balance between the

compressor and high pressure turbine. A zero torque

differential is indicative of gas generator balance and

steady state operation, while a non-zero torque differential

is indicative of gas generator acceleration or deceleration.

As in Herda's solution method, there was assumed to be a

distinct MF, P2, and P4 for every steady state torque value,

and these quantities were required for calculation of the

remaining plant variables.

Techniques previously used for converging torque and

pressure values were slope methods. Several other

mathematically intense slope convergence algorithms were

initially investigated in the present work, these also

proved to be inadequate. To better visualize the behavior

of the torque and pressure curves being dealt with, a torque

balance equation was derived using the compressor and high

pressure turbine equations developed by Herda. The

resulting equation was a quadratic expression in terms of

five variables: MF, P2, P4, NG, and NS. Three of these
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(MF, NG, and NS) were known or could be calculated for a

particular operating point, leaving P2 and P4 as unknowns.

A grid procedure was employed to solve for P2 and P4 which

forced two criteria to be met:

(1) The gas turbine must be torque balanced;

(2) All component input-output relationships must be
satisfied.

The modified multiport diagram of Figure 5 illustrates the

process.

Fuel (MF) and a range of potential P2G values (P2

"guessed") were used as inputs. A corresponding value of

P4G was calculated from the torque balance quadratic

equation. An imaginary root check discarded any imaginary

roots, leaving only the real roots for consideration as

possible solutions. Roots acquired using the negative

radical portion of the quadratic equation were defined as

"low energy" solutions, while roots acquired using the

positive radical were defined as "high energy" solutions.

It was decided that should the situation arise where both

high and low energy solutions existed in P4G, the low energy

solution would be chosen because it corresponded physically

to less fuel used for the operating point. Each pair of

guessed pressures (P4G) was then input into calculations to

check for torque balance. If torque balance was achieved,

the corresponding values were recorded and the routine

continued. If the torque balance checks failed, the next

value of P2G was input and the process repeated. Torque
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balance caused the computation of P4C, the computed P4

pressure, which was calculated from a subroutine involving

component input output relationships with P2G and MF as the

inputs. Crossing logic was then used to detect points where

the P4C and P4G curves met (or crossed). A crossing of

these curves was considered to be a potential operating

point of the plant. Figure 6 shows an example of P4C and

P4G curves crossing.

The results of this procedure fell into one of the

following categories:

(1) A solution existed, but outside of the valid P2
range;

(2) Multiple crossings existed in the valid P2 range;

(3) Imaginary solutions existed;

(4) A combination of 1, 2, and 3;

(5) Only one solution existed in the valid P2 range;

(6) No solution existed (no crossings).

Convergence to a root in category 1 or 3 above could

result in an incorrect steady state solution. This

explains some of the numerical instability and inability to

converge some points in the operating envelope encountered

in the past.

The existence of multiple roots presents the rather

formidable task of consistently extracting the root that

leads to the correct steady state solution. In the case of

two roots in the valid P2 range, it was discovered that
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often the high energy solution provided a better steady

state answer than the low energy solution.

Eventually this method was abandoned because of

inaccuracies in equation coefficients and the large changes

in the "A" and "B" matrices which occurred for very small

changes in P4. For this reason a grid search technique was

adopted. Although computationally intense, the method

considered all possible combinations of MF, P2, and P4

within specified ranges, thereby eliminating the problem of

converging on the first root which occurs in gradient

methods.

Two computer algorithms were developed, one to provide

the MF, P2, and P4 ranges to be searched, and the second to

converge these three values. Figure 7 is a flowchart for

the first algorithm which is called the Variable Range

Determining (VRD) algorithm, a copy of which is included as

Appendix A. The inputs to the program were gas generator

speed (NG), power turbine speed (NS), and the number of

iterations for each of the variables: MF, P2, and P4. This

number of iterations determined both the size of the search

increments and the width of search area. The fuel initial

guess was computed by subroutine NGNSMF to determine the

starting point for fuel iteration. A copy of NGNSMF and all

other subroutines used is included as Appendix D. The

variable initialization section was then entered to set the
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values of the various increments as well as to initialize

the high and low values. The VRD increments were

established using the maximum and minimum possible values in

the normal plant operating envelope for each of the three

variables being considered. The first fuel guess was

arbitrarily set 20 pounds less than the value returned by

NGNSMF to ensure proper coverage of the beginning of the

fuel range. The fuel iteration loop then incremented the

fuel and set P2 to the low value of its operating range.

The P2 loop was then entered, P2G incremented, and

subroutines called to compute compressor torque (QC),

compressor discharge temperature (T2), and air mass flow

rate (MA). The P4 low value was then set, P4 loop entered,

and P4G incremented. The high pressure turbine torque

(QHPT) was calculated via a subroutine, and then QC and QHPT

were compared. If the difference had not changed sign,

torque convergence had not occurred and P4G was incremented.

If the difference had changed sign or was equal to zero,

torque convergence was assumed and subroutines to calculate

high pressure turbine discharge temperature (T4) and P4C

were called. P4G and P4C were then compared for convergence

in a similar fashion. If convergence was not obtained, P4G

was incremented and the process continued. If P4 conver-

gence was obtained the P2 subroutine was called upon to

compute P2C, then the third and last convergence check was

made on P2. Failure to converge incremented P4G.
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Successful convergence in all three tests resulted in logic

which identified the variable range for poLsible

solution(s). Upon completion of the P4 range, the P2 loop

was incremented and the process repeated. The MF loop was

incremented when the range of P2 values was exhausted, and

the routine continued until the MF range had been traversed.

The end result was that for every incremented value of MF,

all combinations of P2G and P4G were examined and compared

to computed values. The results were then grouped to

provide the solution variable ranges for the second

algorithm, which refined the solution.

The Solution Convergence (SC) algorithm was essentially

the same as the previous VRD algorithm. A copy of the SC

program is included as Appendix B. The high and low values

for MF, P2, and P4 were specified to be those obtained from

the VRD algorithm. The increments in the SC algorithm were

defined as functions of the VRD high and low variables and

the originally defined VRD increments. The SC increments

were smaller than the VRD increments, providing a finer grid

to be searched. The search range for each variable was

established by starting one VRD increment outside the

initial value and then incrementing by SC increments. This

method ensured proper coverage in the vicinity of the

initial value of the range. Coverage was extended slightly

past the final value by adding an arbitrary number of

iterations to the number of "guesses" specified for each
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variable during the input phase. Convergence logic was the

same as previously discussed. The accuracy of the converged

solution was determined by the magnitude of the terms DELQ

(QC - QHPT), DELP2 (P2C - P2G), and DELP4 (P4C - P4G). The

smaller the "DEL" terms, the more accurate the solution.

The output of the routine was a list of all converged

solutions that lay within the specified ranges of MF, P2,

and P4.

With the critical convergence criteria met, the final

portion of the steady state solution process could be

completed. A third computer routine was developed from work

performed by Herda and Miller. The Steady State Variable

and Partial Derivative (SSVPD) Algorithm used the converged

MF, P2, and P4 values to compute steady state values for air

mass flow (MA), air-fuel mass flow (MAF), high pressure

turbine discharge temperature (T2), power turbine discharge

temperature (T4), free power turbine torque (QFPT),

dynamometer torque (QD), high pressure turbine torque

(QHPT), compressor torque (QC), and dynamometer water weight

(WW). SSVPD calculated the partial derivatives required for

the necessary linearizations to form the state space "A" and

"B" matrices. A copy of the SSVPD program is included as

Appendix C.

Using this three step process, it was possible to

converge steady state solutions for all gas generator speeds

between 22000 RPM and 32000 RPM, and for dynamometer speeds
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between 500 RPM and 2500 RPM. Gas generator speeds below

22000 RPM were sporadically convergeable, they were

unconvergeable below 20000 RPM and above 35000 RPM. Power

turbine speeds above 2500 RPM were not consistently

convergeable.

Miller hypothesized that quadratic data fits to data for

the various components of the model may not be valid

throughout the operating envelope, and this work seems to

validate that theory. That is, quadratic fits appear to be

reasonable in the middle of the operating envelope, but not

in the low or high portions.

A Steady State Convergence Map of "A" matrices was

constructed for the convergeable region of the operating

envelope, and is shown in Figure 8. Since the states NG

and NS characterize the plant in state space, these

variables were chosen as the coordinate axes of the grid.

For each node of the grid, the list of converged solutions

from the SC routine was examined and the DELQ, DELP2, and

DELP4 values compared. Convergence accurate to 0.1 pound of

fuel and 0.1 psi for both pressures were set as minimums or

the solution was eliminated from the list. All remaining

candidates for each node were subsequently entered into the

SSVPD algorithm and the results collected. Strip chart

recordings of actual plant runs were examined and those runs

lying in the convergeable region were utilized. The start

and end points of these runs were converged and used to
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anchor the grid. Once anchored, the remaining grid points

were selected by comparing the various matrix coefficients

for trends both horizontally along lines of constant NG and

vertically along lines of constant NS. The sensitivity to

convergence accuracies was demonstrated by the wide variance

in magnitude of the matrix coefficients for a given grid

point, particularly the A13 and A23 entries. The A13 entry

was extremely sensitive to P4. By establishing the

horizontal and vertical trends on the grid, it was a

relatively simple matter to select/adjust a particular grid

point from the various candidates until the best overall

result was obtained.
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V. DYNAMIC SIMULATION

Due to very low gas turbine inertias, the smoothness of

the changes in "A" matrix entries was critical to effective

plant simulation. Consequently, the Steady State

Convergence Map was first analyzed for horizontal and

vertical trends, both in magnitude and sign. Overall trends

were readily apparent with the exception of seven A12

entries, five A21 entries, and five A23 entries. Of these

discrepancies one was an ill fitting data point (the A23

entry of the matrix at NG = 23150 rpm and NS = 493 rpm was

of the wrong magnitude) and consequently the entire matrix

was disregarded, while the remainder were of the correct

magnitude but of the wrong sign. Table 1 is a summary of

the matrix coefficients that were of the wrong sign.

Possible reasons for these errors include poor data fit at

low engine and dynamometer speeds, and the unreliability of

data values recorded at low engine horsepowers as documented

in the dynamometer technical manual (13). Also, these

values were observed to be extremely sensitive to P4 which

had a large convergence tolerance.

Further examination of the Steady State Convergence Map

revealed that relatively smooth curves could be generated

both horizontally and vertically along lines of constant NG

and NS for each matrix coefficient. The Smoothed Dynamic
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TABLE 1

STEADY STATE CONVERGENCE MAP "A" MATRIX
COEFFICIENT SIGN ERRORS

GRID LOCATION MATRIX COEFFICIENT CORRECT SIGN

(NG,NS)

22000,1000 A12

22000,1500 A12

22000,2000 A12

22000,2000 A21 +

22000,2500 A21 +

23150,2695 A12

23150,2695 A21 +

25000,2500 A12

25000,3000 A12

25000,3000 A21 +

29100,500 A23 +

29100,2950 A12

29100,2950 A21 +

3000,1000 A23 +

32000,500 A23 +

32000,1000 A23 +

Transition Map of Figure 9 was formed by "eyeball smoothing"

the data points from the Steady State Convergence Map.

Trends were easily seen in the middle and right side of the

Steady State Convergence Map, and these were used as models

in the areas where sign discrepancies existed. The end
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result was a grid of smoothed "A" matrices that would be

the cornerstone of the dynamic simulation.

A two-variable linear regression computer algorithm was

used to obtain the coefficients of the best curve fit for

each corresponding set of matrix coefficients. Table 2 is a

summary of the six fits used. The A31, A32, and A33 entries

of the "A" matrices were those that form the state variable

corresponding to combustion energy and were always the same,

hence no fit was required. The "B" matrix was constant at

all values of NG and NS.

The dynamic simulation of the plant was conducted using

an IBM mainframe computer routine entitled Dynamic

Simulation Language (DSL). The above described "A" matrix

validation led to a method of successive linearizations to

compute the values of NG and NS at time intervals of 0.001

seconds during the dynamic trajectories being modelle".

Strip chart data from actual plant runs was entered into

the DSL code to provide the curve for model comparison. The

initial and final plant setpoints were then specified,

followed by the equations to compute the various matrix

coefficients, the linearization equations, and the various

output and graphing statements required. Figure 10 depicts

single and multiple linearizations plotted against data for

a dynamometer speed versus time curve. Clearly, multiple

linearizations were necessary to ensure the proper ending

steady state values were reached. Appendix E is a copy of
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TABLE 2

"A"l MATRIX COEFFICIENT CURVE FITS

MATRIX CURVE

COEFFICIENT FIT EQUATION FORM

All Exponential All = EXP(Cl*NS+C2*NG+C3)

A12 Exponential A12 = EXP(Cl*NS+C2*NG+C3)

A13 Exponential A13 = EXP(Cl*NS+C2*NG+C3)

A21 Exponential A21 = Cl*NS2 +C2*NS*NG
+C3*NG2 +C4*NS
+C5*NG+C6

A22 Linear A22 = Cl*NS+C2*NG+C3

A23 Exponential A23 = EXP(Cl*NS)+C2*NG+C3)

the dynamic simulation program. Appendix F compares the "A"

matrix coefficients of the Smoothed Dynamic Transition Map

to those obtained by the dynamic simulation.

Model validation was conducted in the region of the

Smoothed Dynamic Transition Map known to be most reliable.

Three runs were made across the map at constant NG speeds of

23150, 29100, and 34900 rpm with varying NS speeds. The

results are shown in Appendix G. All show excellent

agreement between the model and data. A fourth validation

was attempted vertically on the left side of the smoothed

grid, starting at NG = 17000.0 rpm and NS = 500 rpm and

ending at NG = 35500 rpm and NS = 748 rpm. The results

obtained were less than satisfactory. However, this

particular validation effort began and ended well outside of
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the region considered to be reliable on the "A" map, and

progressed through the unreliable low dynamometer speed

range. For these reasons the speed ranges chosen for the

controller design and validation portion of this work were

in the center of the Smoothed Dynamic Transition Map which

was considered validated.
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VI. CONTROLLER DESIGN AND COMPARISON

The final segment of this work was concerned with

controller design and comparison for overall performance and

disturbance rejection qualities. Two controllers were

designed, one a classical proportional integral controller

(PI) and the other a modern linear quadratic regulator

(LQR). Due largely to the fact that marine gas turbine

controller designs are largely proprietary in nature, the

design procedures used in this work had to be developed by

the author.

Deceleration was chosen as the design case because

initial work clearly showed a much smaller stability margin

than acceleration operations. Each controller was designed

and validated for varying gas generator and shaft speed, but

at constant dynamometer water volume. These specifications

simulate acceleration and deceleration modes at constant

propeller pitch. Deceleration began at steady state speeds

of NG = 34900 rpm and NS = 2000 rpm, and were subsequently

slowed to NG = 23150 rpm and NS = 1500 rpm. The values were

simply reversed for the acceleration case.

The control scheme shown in Figure 1 is currently

employed by the U.S. Navy for control of General Electric

LM-2500 gas turbine propulsion plants aboard DD-963 class

destroyers. Note that the Navy uses a two loop approach to
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control the gas turbine speed, propulsion shaft speed, and

propeller pitch. Inputs to the plant were through an

integrated throttle arrangement that schedules these three

quantities for the desired ship speed. In order to

demonstrate a similar control concept, the plant model used

in the present work was chosen to closely emulate the

general structure of Figure 1. Figure 11 is a diagram of

this model and the control structure used for the PI design.

The PI controller was designed first using a two step

process. The inner loop consisted of a proportional

control scheme to govern the gas generator. It was designed

prior to the outer loop, using a cut and try process to

select the appropriate gain (KPNG) to give a smooth non-

oscillatory response. Steady state error was not a major

consideration in the inner loop because the overall plant

control was to be exerted on the propulsion shaft. Figures

12 and 13 depict different responses for various choices of

KPNG for deceleration and acceleration respectively. A gain

of KPNG = 0.001 was chosen for the inner loop and held

constant throughout the design of the outer loop.

A proportional integral arrangement was employed for the

outer NS control loop. This was chosen so that the steady

state error associated with shaft response would be

eliminated. Once again a cut and try procedure was used to

decide the shaft proportional gain (KPNS) and integral

(KINS) gain, with the criteria of smooth response driving
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the selections. Figures 14 and 15 show plant response to

various gains for the deceleration case in the gas generator

and power turbine output shaft respectively. Gains of KPNS

= 80.0 and KINS = 40.0 were selected for the outer control

loop.

The LQR controller was designed next using the control

design software package MATRIXX. State space "A" and "B"

matrices at the center of the smooth grid (NG = 25000 rpm,

NS = 1500 rpm) were chosen to fix the design. In the LQR

method, gains are sought to minimize a specified performance

index "J" (or cost function) [Ref. 14]. The performance

index is expressed as an integral containing a function of

the state variables and a function of the input variables:

j= f (TQe + uTRu)dt (3)
0

The "Q', and "R" matrices are symmetric weighting matrices

that weight the states and inputs respectively. The

designer chooses "Q" and "R", then computes the performance

index which results in the LQR gains. Tradeoffs between "Q"

and "R" weightings can be performed to achieve the best

results.

In the present work, the "Q" matrix was scaled so that

each state matrix was making an approximately equal

contribution to the response. The "R" matrix was chosen by

a cut and try process, and was designed to minimize the
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plant fuel input. The matrices were adjusted until the most

acceptable response was obtained. This particular LQR de-

sign is strictly a proportional regulator and has no inte-

gral action to remove steady state error. As a result there

is some steady state error in both NG and NS. It was possi-

ble to eliminate or nearly eliminate this error in either NG

or NS, but at the expense of the other variable. The chosen

design exhibits small steady state errors in both NG and NS.

Figures 16, 17, 18, and 19 are comparisons of the

deceleration and acceleration validations of the PI and LQR

controllers for both the gas generator and power turbine

shafts. The PI controller provides a smoother response in

both NG and NS deceleration curves, while LQR reaches steady

state in less time. The acceleration validation shows the

LQR controlier providing a smoother, quicker response in NS

and a quicker response in NG. In actuality, all responses

are comparable for both controllers.

Disturbance rejection for both controllers was analyzed

by subjecting each one to a cyclic torque disturbance

simulating sea state oscillations. A sine function load was

used that provided a ten second period:

QL = 20.0 sin(tn/5.0) (4)

The controllers were set to maintain steady gas generator

and shaft speeds of NG = 17642 rpm and NS = 1500 rpm
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respectively, and the QL function applied through the torque

input to the models. Each model was run for 35 seconds and

the data recorded. Peak-to-peak values of NG and NS were

obtained, as well as fuel consumed by the plant for both

control designs. Table 3 compares the results for two LQR

designs to the PI design and graphically illustrates the

effects that the before mentioned tradeoffs can have on the

LQR design. Of particular interest are the NG peak-to- peak

values and the fuel consumed values. The smaller NG peak-

to-peak values indicate better disturbance rejection for the

NG output, which translates to less wear on critical gas

turbine components such as variable stator vanes. This in

turn has the potential to decrease maintenance. downtime as

well as mean time between failures of complex mechanical

components. Although the difference in fuel consumed may be

small, the potential exists for substantial fleetwide

reductions in fuel costs when this figure is applied to the

amount of fuel burned annually by all gas turbine ships.

56



TABLE 3

CONTROLLER DESIGN COMPARISON

NG1  NS1  FUEL 2

LQR #1 3320.0 203.1 0.74136

LQR #2 3688.0 125.8 0.74208

PI 4233.0 74.5 0.74337

iPeak-to-Peak Values, rpm

2Total ibm consumed in 35 seconds
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VII. CONCLUSIONS AND RECOMMENDATIONS

Two non-proprietary control design methods have been

developed for marine gas turbine propulsion systems, one a

classical PI controller, the other a modern LQR controller.

Comparable performance has been demonstrated between the

PI and LQR controllers.

A new gas turbine simulation has been developed that

allows real time or near real time computation of perform-

ance. This simulation has immediate applications in model

based control and plant health monitoring.

To increase confidence in the plant model, the Steady

State Convergence Map should be reconstructed from data

obtained from actual plant runs at designated points

throughout the operating envelope. This would eliminate the

problems of multiple root convergence in the steady state

computer simulations, and provide a more accurate data base

for the curve fits required by the dynamic simulation.

Proportional LQR design should be further developed to

account for important non linearities in the gas generator

and controllable reversible pitch propeller, as well as

limiting/alarm conditions that exist in fleet marine gas

turbine propulsion plants.

An integral LQR controller should be investigated. This

type of controller has the potential to offer better
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performance tradeoffs in the areas of gas generator speed

control, shaft speed control, and in the reduction of fuel

consumption.

Once the LQR controller is perfected, the idea of an LQR

Gain Map similar to the Smoothed Dynamic Transition Map

should be investigated. This concept has the potential to

maximize the benefits of the LQR controller by computing the

best gain values at each time step as the plant progresses

through a particular dynamic trajectory.

This technology should be implemented at the Naval

Postgraduate School to quantify real improvements and

justify larger scale development.
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APPENDIX A

* ROUTINE VRD *

* BY *

* V.A. STANNETTI *

* D.L. SMITH *

* THIS ROUTINE PROVIDES THE FIRST OF A THREE STEP *

* PROCESS TO OBTAIN STEADY STATE CONVERGENCE AT A POINT *

* IN THE OPERATING ENVELOPE OF THE BOEING 501-6A GAS *

* TURBINE INSTALLED AT THE NAVAL POSTGRADUATE SCHOOL. *

* ROUTINE VRD IDENTIFIES THE SEARCH RANGES FOR THE *

* VARIABLES MF, P2, AND P4. *

***************************** ***** . .**************************

C

C

REAL NG,NS,MF,MA,MAF,MFG,MFI,MFHIGH,MFLOW,MFSAVG

C

C INPUT THE INITIAL GAS GENERATOR SPEED AND DYNO SPEED.

C

WRITE(6,2)
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2 FORMAT(/,3X,'INPUT INITIAL GAS GENERATOR SPEED,"NG".')

READ(5,*) NG

WRITE(6,*) NG

c

C

WRITE(6,3)

3 FORMAT(/ ,3X," INPUT INITIAL DYNO SPEED,"NS"l.1)

C

READ(5,*) NS

WRITE(6,*) NS

C

WRITE(9,*) 'NG= t ,NG

WRITE(9,*) 'NS=',NS

c

C

WRITE(6,4) NMF

4 FORMAT(/,3X, 'INPUT NUMBER OF FUEL GUESSES, "NMF". ')

READ(5,*) NMF

WRITE(6,*) NMF

c

C

WRITE(6,5) NP2

5 FORMAT(/,3X,'INPUT NUMBER OF P2 GUESSES,"NP2"1.1)

READ(5,*) NP2

WRITE(6,*) NP2

C

61



rpl
C

WRITE(6,6) NP4

6 FORMAT(/,3X,'INPUT NUMBER OF P4 GUESSES,"~NP4fI.I)

READ(5,*) NP4

WRITE(6,*) NP4

C

C CALCULATION OF INITIAL FUEL GUESS

CALL NGNSMF(NG,NS,MFI)

C

C VARIABLE INITIALIZATION

C

MFG =MFI -20.0

RNMF =NMF

RNP2 =NP2

RNP4 =NP4

DMF =40.0 /RNMF

DP2 25. 0 /RNP2

DP4 =5.0 /RNP4

QCONV 10.0

P2CONV 0.5

P4CONV =0.5

MFLOW MFI

MYHIGH MFG

P4LOW =100. 0

P4HIGH =1.00

P2LOW 100.0

P2HIGH =1. 00

ATEST 1000.0
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P2SAVC = 0.0

P2SAVG = 0. 0

P4SAVC = 0.0

P4SAVG =0. 0

MESAVG = 0.0

C

C NP LOOP

C

DO 100 J = 1,NMP

MFG = MPG + DMF

P2SAVE = 0.0

P2G = 20. 0

WRITE(6 ,*)

WRITE(6,*) 'MPG=',MFG

C

C P2 LOOP

C

DO 200 K = I,NP2

P2G = P2G + DP2

CALL SUBQC(NG,P2G,QC)

CALL SUBT2(NG,P2G,T2)

CALL SEBMA(NG,P2G,MA)

QSAVE =0.0

P4SAVE =0.0

P4G = 20.0

C

C P4 LOOP

C
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DO 300 L =1,NP4

P4G = P4G -DP4

C

C TORQUE CONVERGENCE

C

CALL SUBQHT(NG,MA,T2,MFG,P4G,QHPT)

DELQ =QC - QHPT

QTEST =DELQ * QSAVE

QSAVE =DELQ

IF(QTEST. GE. 0. 0) GO TO 300

C

C P4 CONVERGENCE

C

10 MAF =MA +MF

CALL SUBT4(NG,MA,T2,MFG,P4G,T4)

CALL SUBP4(MAF,T4,NS,P4C)

DELP4 =P4C - P4G

P4TEST =DELP4*P4SAVE

P4SAVE =DELP4

IF(P4TEST. GE.0. 0) GO TO 300

C 15 IF(ABS(DELP4).GT.P4CONV) GO TO 300

C

C P2 CONVERGENCE

C

20 CALL SUBP2(NG,14A,T2,MFG)P4G,P2C)

DELP2 = P2C - P2G

P2TEST = DELP2*P2SAVE

P2SAVE = DELP2
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IF(P2TEST. GE.0. 0) GO TO 300

C

30 IF(MFG.LT.NFLOW) MFLOW = MIFG

IF(MFG.GT.MFHIGH) MFHIGH = FG

IF(P4G.LT.P4LOW) P4LOW = P4G

IF(P4G.GT.P4HIGH) P4HIGH = P4G

IF(P2G. LT. P2LOW) P2LOW = P2G

IF(P2G.GT.P2HIGH) P2HIGH = P2G

C

DELSUM = (DELQ**2) + (DELP2**2) +(DELP4**2)

IF(DELSUM. GE. ATEST) GO TO 300

35 P2SAVC = P2C

P2SAVG = P2G

P4SAVC = P4C

P4SAVG = P4G

MFSAVG = MFG

DELQG = DELQ

DELP2G = DELP2

DELP4G = DELP4

ATEST = DEL5EJM

C

WRITE(6,*) 'CONVERGENCE OBTAINED AT'

WRITE(6,*) 'P2C=&,P2SAVC

WRITE(6,*) 'P2G=',P2SAVG

WRITE(6,*) 'P4C=&,P4SAVC

WRITE(6,*) 'P4G-' ,P4SAVG

WRITE(6,*) 'MF=&,MrSAVG

WRITE(6,*) 'DELQ=',DELQG
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WRT(6* DELP2= *,DE-P2

WRITE(6,*) DELP2=',DELP4G

WRT(,) 'DL4CDL4

C

C

300 CONTINUE

C

C

200 CONTINUE

100 CONTINUE

C

WRITE(6,*) 'CONVERGENCE OBTAINED AT'

WRITE(6,*) 'P2C=",P2SAVC

WRITE(6,*) 'P2G=',P2SAVG

WRITE(6,*) 'P4C=',P4SAVC

WRITE(6,*) 'P4G=",P4SAVG

WRITE(6,*) 'MF=',MFSAVG

WRITE(6,*) DELQ=',DELQG

WRITE(6,*) ?DELP2=",DELP2G

WRITE(6,*) 'DELP4=",DELP4G

C

WRITE(6,*) 'MFLOW&-,MFLOW

WRITE(6,*) 'MFHIGH=',MFHIGH

WRITE(6,*) 'P4LOW=' ,P4LOW

WRITE(6,*) 'P4HIGH=',P4HIGH

WRITE(6,*) 'P2LOW=',P2LOW

WRITE(6,*) 'P21{IGH=',P2HIGH
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C

WRITE(9,*) 'CONVERGENCE OBTAINED AT'

WRITE(9,*) 'P2C=',P2SAVC

WRITE(9,*) 'P2G=',P2SAVG

WRITE(9,*) 'P4C=',P4SAVC

WRITE(9,*) 'P4G&',P4SAVG

WRITE(9,*) 'MF=',MFSAVG

WRITE(9)*) 'DELQ=',DELQG

WRITE(9,*) 'DELP2=',DELP2G

WRITE(9,*) 'DELP4=',DELP4G

C

WRITE(9,*) ' MFLOW-',MFLOW

WRITE(9,*) ' MFHIGH=I,MFHIGH

WRITE(9,*) 'P4LOW=',P4LOW

WRITE(93 *) 'P4HIGH=',P4{IGH

WRITE(9,*) ?P2LOW=',P2LOW

WRITE(9,*) 'P2HIGH=' ,P2HIGH

C

900 STOP

END
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APPENDIX B

• ROUTINE SC *

* BY *
* V.A. STAMMETI *
* D.L. SMITH *

* THIS ROUTINE PROVIDES THE SECOND OF A THREE STEP *
• PROCESS TO OBTAIN STEADY STATE CONVERGENCE AT A POINT *
• IN THE OPERATING ENVELOPE OF THE BOEING 501-6A GAS *

TURBINE INSTALLED AT THE NAVAL POSTGRADUATE SCHOOL. *
• ROUTINE SC CONVERGES THE VARIABLES MF, P2, AND P4. *

C
C

REAL*8 NG,NS ,MF,MA,MAF,MFG,MFI,MFSAVG,MFHIGH,MFLOW,MFL,RNMF,

1 RNP2,QCONV,P2CONV,P4CONV,P2LOW,P2HIGH,P4LOW,P4HIGH,ATEST,

1 P2SAVE,P2SAVC,P2SAVG,P4SAVE,P4SAVC,P4SAVG,DMF,DP2,DP4,RNNMF,

1 DMF2,P2L,RNNP2 ,DP22,P4H,RNNP4,DP42,P2G,QC,T2,QSAVE,P4G,P4C,

1 P2C,QHPT,DFLQ,QTEST,T4,DELP4,P4TEST,P2TEST,DELP2,DELSUM,

1 RNP4, DELQG, DELP4G, DELP2G

C

C INPUT THE INITIAL GAS GENERATOR SPEED AND DYNO SPEED.

lb C

WRITE(6,2)

2 FORMAT(/,3X,'INPUT INITIAL GAS GENERATOR SPEED,"NG". ')

C

READ(5,*) NG

WRITE(6,*) NG

C
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C

WRITE(6,3)

3 FORMAT(/,3X,'INPUT INITIAL DYNO SPEED,t1NS'. 1)

C

READ(5,*) NS

WRITE(6,*) NS

C

WRITE(9,*) 'NG=-',NG

WRITE(9,*) 'NS=',NS

C

C

WRITE(6,4) NMF

4 FORMAT(/)3X,'INPUT NUMBER OF FUEL GUESSES,"NNF".')

READ(5,*) NMF

WRITE(6,*) NIIF

C

C

WRITE(6,5) NP2

5 FORMAT(/,3X,'INPUT NUMBER OF P2 GUESSES,"NP2"'.')

READ(5,*) NP2

WRITE(6,*) NP2

C

C

WRITE(6,6) NP4

6 FORMAT(/,3X,'INPUT NUMBER OF P4 GUESSES,"NP41. ')

READ(5,*) NP4

WRITE(6,*) NP4
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C

WRITE(6,7) NRNO

7 FORMAT(/,3X,'INPUT THE NUMBER OF THIS REFINEMEN'r,"NRNO".')

READ(5,*) NRNO

WRITE(6,*) NRNO

C

C VARIABLE INITIALIZATION

C

RNNF = N1IF

RNP2 = NP2

RNP4 = NP4

QCONV 10.0

P2CONV =0.5

P4CONV =0.5

MFLOW =86. 0000000

MFIIIGH = 90. 00000

P4LOW =15. 000000

P4HIGH = 16. 0000000

P2LOW =22. 0000000

P2HIGH = 23. 000000

ATEST = 1000. 0

P2SAVC = 0.0

P2SAVG =0. 0

P4SAVC =0. 0

P4SAVG = 0. 0

MFSAVG = 0. 0

C

DMF =40.0 / RNMF
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DP2 = 25.0 / RNP2

DP4 = 5.0 / RNP4

MFL = MFLOW - DMF

WRITE(6,*) 'MFL=' ,MFL

MM'F = (MFHIGH - MFL) / MIF

NNMF = NMF * 5

RNNMF =NNMF

DMF2 = DMF / 5.00

NNMF = NNIIF +- 10

C WRITE(6,*) 'NNMF=',NNMF

C WRITE(6,*) 'DMF2=',DMF2

C

P2L = P2LOW - DP2

C WRITE(6,*) 'P2L=&,P2L

NP2 =(P2IGH - P2L) /DP2

NNP2 =NP2 * 10

RNNP2 =NNP2

DP22 =DP2 / 10. 0

NNP2 =NNP2 + 10

C WRITE(6,*) 'NNP2=',NNP2

C WRITE(6,*) 'DP22=' ,DP22

P4H = P4HIGH + DP4

NP4 = (P4H -P4LOW) / DP4

NNP4 = NP4 *10

RNNP4 = NNP4

DP42 = DP4 / 10.0

NNP4 = NNP4 + 10

c WRITE(6,*)'NNP4=' ,NNP4
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C WRITE(6,*) 'DP42=',DP42

C REINITIALIZE VARIABLES

o DMF = (MEHIGH - MFLOW)/RNIF

C DP2 = (P2HIGH - P2LOW) /RNP2

C DP4 = (P4HIGH - P4LOW) /RNP4

C

C

C

MFHIGH =20. 0

MFLOW =500.0

P2LOW -300.0

P2HIGH =1. 0

P4LOW =300. 0

P4HIGH =1. 0

C

MFG = MFL - DIIF2

C MF LOOP

C MFG = MFLOW - DMF

C

DO 100 J = 1,NNUF

C DO 100 J = 1,NMF

MFG = MFG + DMF2

C MFG =MFG +DMF

P2SAVE = 0. 0

P2G = P21, - DP22

C P2G = P2LOW - DP2

WRITE (6 ,*
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WRITE(6,*) 'MFG=',MFG

C

C P2 LOOP

C

DO 200 K = 1,NNP2

C DO 200 K = I,NP2

C P2G =P2G +DP2

P2G = P2G + DP22

CALL SUBQC(NG,P2G,QC)

CALL SUBT2(NG,P2G,T2)

CALL SUBMA(NG,P2G,MA)

QSAVE =0.0

P4SAVE =0.0

P4G = P4H + DP42

C P4G = P4HIGH - DP4

C WRITE(6,*) 'P4G=&,P4G

C

C P4 LOOP

C

DO 300 L = 1,NNP4

P4G =P4G - DP42

C DO 300 L = 1,NP4

C P4G =P4G +DP4

C

C TORQUE CONVERGENCE

C

CALL SUBQHT(NG,MA,T2,MFG,P4G,QHPT)

DELQ = QC - QHPT
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QTEST = DELQ *QSAVE

QSAVE = DELQ

C WRITE(6,*) 'QTEST&-'QTEST

IF(QTEST.LT.O.O) GO TO 10

8 GOTO300

C 9 IF(ABS(DELQ).GT.QCONV) GO TO 300

C

C P4 CONVERGENCE

C

10 MAF =MA +MF

CALL SUBT4(NG,MA,T2,MFG,P4G,T4)

CALL SUBP4(MAF,T4,NS,P4C)

DELP4 =P40 - P4G

P4TEST DELP4*P4SAVE

P4SAVE DELP4

C WRITE(6,*) 'P4TEST=',P4TEST

IF(P4TEST.LE.O.O) GO TO 20

14 GO TO 300

C 15 IF(ABS(DELP4).GT.P4C0NV) GO TO 300

C

C P2 CONVERGENCE

C

20 CALL SUBP2(NG,MA,T2,MFG,P4G,P2C)

DELP2 =P2C - P2G

P2TEST DELP2*P2SAVE

P2SAVE =DELP2

C WRITE(6,*) 'P2TEST=',P2TEST

IF(P2TEST.LE.O.O) GO TO 30
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24 GO TO 300

C 25 IF(ABS(DELP2).GT.P2CONV) GO TO 300

30 IF(MFG.LT.MFLOW) MFLOW = MFG

IF(MFG.GT.MFHIGH) MFHIGH = MFG

IF(P4G.LT.P4LOW) P4LOW = P4G

IF(P4G.GT.P4HIGH) P4IGH = P4G

IF(P2G.LT.P2LOW) P2LOW = P2G

IF(P2G.GT.P2HIGH) P2IGH = P2G

C W'RITE(6,*) 'CONVERGENCE HERE'

C

DELSUM = (DELQ**2) + (DELP2**2) +(DELP4**2)

IF(DELSUM..GE.ATEST) GO TO 300

35 P2SAVC = P2C

P2SAVG = P2G

P4SAVC = P4C

P4SAVG = P4G

MFSAVG = MFG

DELQG = DELQ

DELP2G = DELP2

DELP4G = DELP4

ATEST = DELSUM

C

C

WRITE(6,*) 'CONVERGENCE OBTAINED AT'

WRITE(6,*) 'P2C=',P2SAVC

WRITE(6,*) P2G=',P2SAVG

WRITE(6,*) 'P4C-',P4SAVC

WRITE(6,*) 'P4G=',P4SAVG
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WRITE(6,*) ' F=',MFSAVG

WRITE(6,*) 'DELQ=',DELQG

WRITE(6,*) 'DELP2=',DELP2G

WRITE(6,*) DELP4=t ,DELP4G

WRITE(6,*)

C

WRITEC 9,*)

WRITE(9 ,*) 'NUMBER OF REFINEMENTS=' ,NRNO

WRITE(9,*) 'CONVERGENCE OBTAINED AT'

WRITE(9,*) 'P2C=&,P2SAVC

WRITE(9,*) 'P2G=',P2SAVG

WRITE(9,*) 'P4C=&,P4SAVC

WRITE(9,*) 'P4G=&,P4SAVG

WRITE(9,*) 'MF=',MFSAVG

WRITE(9,*) 'DELQ=',DELQG

WRITE(9,*) 'DELP2=',DELP2G

WRITE(9,*) tDELP4=',DELP4G

C WRITE(9,*)

WRITE(9,*) 'MFLOW=',MFLOW

WRITE(9,*) 'MFHIGH=',MFHIGH

WRITE(9,*) 'P4LOW=',P4LOW

WRITE(9,*) 'P4HIGH=',P4HIGH

WRITE(9,*) 'P2LOW-',P2LOW

W'RITE(9,*) 'P2HIGH=',P2HIGH

C P4 =P4G +DP42

CALL PART(A,B,MA,P2G,T2,MFG,NG,NS,P4G,T4,MAF,WW)

300 CONTINUE

C
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20 CONTINUE

200 CONTINUE

C

WRITE(6,*) 'CONVERGENCE OBTAINED AT'

WRITE(6,*) 'P2C=',P2SAVC

WRITE(6,*) 'P2G=',P2SAVG

WRITE(6,*) 'P4C=',P4SAVC

WRITE(6,*) 'P4G=',P4SAVG

WRITE(6,*) !F=',MFSAVG

WRITE(6,*) 'DELQ=',DELQG

WRITE(6,*) 'DELP2=',DELP2G

WRITE(6,*) 'DELP4=',DELP4G

C

C

WRITE(6,*) 'MFLOW=',IFLOW

WRITE(6,*) 'MFHIGH=',MFHIGH

WRITE(6,*) 'P4LOW=',P4LOW

WRITE(6,*) 'P4HIGH=',P4HIGH

WRITE(6,*) 'P2LOW=',P2LOW

WRITE(6,*) 'P2HIGH=',P2HIGH

C

C

C

C

900 STOP

END
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APPENDIX C

* ROUTINE SSVPD *

* MODIFIED BY *

* V.A. STAMMETTI *

* FROM A SUBROUTINE BY *

* V.J.HERDA *

* THIS ROUTINE IS THE THIRD AND FINAL OF A THREE STEP *

* PROCESS TO OBTAIN STEADY STATE CONVERGENCE AT A POINT *

* IN THE OPERATING ENVELOPE OF THE BOEING 501-6A GAS *

* TURBINE ENGINE INSTALLED AT THE NAVAL POSTGRADUATE *

* SCHOOL. ROUTINE SSVPD PROVIDES THE STEADY STATE *

* VALUES FOR ALL NECESSARY PLANT VARIABLES, AS WELL AS *

* THE STATE SPACE "A" AND "B" MATRICES. *

REAL*8 NG,NS ,MF,MA,MAF ,NSO,NGO,MFO,MAFO,MAO,MFDEL,IIFU,MFL,

1 MIR,MF2,MFMIN,MERR,MAC,AFC,T2,T4,P4C,P2G,MFI,
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1LROOT,HROOT,P4Gl,P4G2,P4TEST,AA,BB,CC,AA1,BB1,CCI,

1 SCALE ,P2DEL,P4CONV,FO

DIMENSION A(3,3),B(3,2)

C

C INPUT THE INITIAL GAS GENERATOR SPEED AND DYNO SPEED.

C

WRITE(6,2)

2 FORMAT(/,3X, 'INPUT INITIAL GAS GENERATOR SPEED,"NG'. ')

C

READ(5,*) NG

WRITE(6,*) NG

C

C

WRITE(6,3)

3 FORMAT(/,3X,'INPUT INITIAL DYNO SPEED,"NS"l.1)

C

READ(5,*) NS

WRITE(6,*) N5

C

C

WRITE(6,4) P2

4 FORMAT(/,3X)'INPUT PRESSURE,"P2".')

READ(5,*) P2

WRITE(6,*) P2

C

C

WRITE(6,5) NP4

5 FORMAT(/,3X,'INPUT PRESSURE,"P4". ')
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READ(5,*) P4

'WRITE(6,*) P4

C

WRITE(6,6) MF

6 FORMAT(/,3X,'INPUT FUELS 1mFlf.')

READ(5,*) MF

WRITE(6,*) !MF

C

C PARAMETER CALCULATIONS

C

CALL SUBMA(NG,P2,MA)

CALL SUBT2(NG,P2,T2)

CALL SUBT4(NG,MAT2,MF,P4,T4)

CALL SUBQC(NG,P2,QC)

CALL SUBQHT(NG,M4A,T2,MF,P4,QHPT)

IIAF =MA + MF

CALL SUBQFT( MAF,T4,NS ,QFPT)

QD = QFPT

C5 = 1. 19294E-5

C3 = 4.OE-6

C4 = -20. 0 + C3*NS*NS

MIR =(QD - C4) / (C5*NS*NS)

IF(MIR.LT.0O) MIR = 0.0

WW = MIR**(1. 0/1. 3)

C

C COMPUTATION OF THE STATE SPACE MATRIX COEFFICIENTS

C

CALL PART(A,B,MA,P2,T2,MF,NG,NS,P4,T4MAF,WW)
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C

WRITE(6,*) 'NG = ',NG

WRITE(6,*) 'NS = ',NS

WRITE(6,*) 'MF = ',MF

WRITE(6,*) 'P2 = ',P2

WRITE(6,*) 'P4 = ',P4

WRITE(6,*) 'T2 = ',T2

WRITE(6,*) 'T4 = ',T4

WRITE(6,*) 'MA =',MA

WRITE(6,*) 'MAE ',MAF

WRITE(6,*) 'QC = ',QC

WRITE(6,*) 'QHPT = ',QHPT

WRITE(6,*) 'QFPT = ',QFPT

WRITE(6,*) 'QD = ',QD

WRITE(6,*) 'WW =',WW

C

WRITE(9,*) 'NG = ',NG

WRITE(9,*) 'NS = ',NS

WRITE(9,*) 'ME = ',MF

WRITE(9,*) 'P2 = ',P2

W'RITE(9,*) 'P4 = ',P4

W'RITE(9,*) 'T2 = ',T2

WRITE(9,*) 'T4 = 'T

WRITE(9,*) 'MA = ',MA

WRITE(9,*) MAF = ',MAF



WRITE(9,*) ' QC - ',QC

WRITE(9,*) ' QHPT = ',QHPT

WRITE(9,*) ' QFPT = ',QFPT

WRITE(9,*) ' QD = ',QD

WRITE(9,*) ' WW = ' ,WW

C

C

900 STOP

END

C

SUBROUTINE PART(A,B,MA,P2,T2,MF,NG,NS,P4,T4,MAF,WW)

C

C THIS SUBROUTINE CALCULATES THE ELEMENTS OF THE 'A' AND 'B' MATRICES

C IN THE STATE SPACE EQUATION:

C

C XDOT = A*X + B*U.

C

C

C COMMON QC,NG,P2,QH,MA,T2,MF,P4,QF,MAF,T4,NS,QD,WW

DIMENSION A(3,3),B(3,2)

REAL NG,NS,MF,MA,MAF,JG,JD,DENOM1 ,DENOM2,DENOM3

C

C

C

JG = 0.009525 * 2 * 3. 14159 / 60.0

JD = 0.6738 * 2 * 3.14159 / 60.0
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C

C CALL SUBROUTINES TO GET PARTIAL DERIVATIVES.

C

CALL DMA(NG,P2,DMADNG,DMADP2)

CALL DT2(NG,P2 ,DT2DNG,DT2DP2)

CALL DQC(NG,P2 ,DQCDNG,DQCDP2)

CALL DP2(NG,MA,T2 ,MF,P4 ,DP2DNG,DP2DMF,DP2DMA,DP2DT2 ,DP2DP4)

CALL DT4(NG ,MA ,T2 ,MF ,P4 ,DT4DNG ,DT4DMF ,DT4DMA ,DT4DT2 ,DT4DP4)

CALL DQHT(NG,MA,T2,MF,P4,DQHDNG,DQHDMF,DQHDMA,DQHDT2,DQHJP4)

CALL DP4(MAF,T4,NS ,DP4DNS,DP4MAF,DP4DT4)

CALL DQFT(MAF ,T4,NS ,DQFDNS ,DQFMAF ,DQFDT4)

CALL DQD(NS ,WW,DQDDNS ,DQDDWW)

C

C COMPUTE THE COEFFICIENTS OF THE STATE SPACE EQUATIONS (I.E. THE

C ELEMENTS OF THE 'A' AND 'B' MATRICES).

C

Ji = DQHDMA

J2 = DQHDMF

J3 = DQHDT2

J4 = DQHDP4

J5 = DQHDNG

El = DQCDP2

E2 = DQCDNG

Cl = DMADP2

C2 = DMADNG

Dl = DT2DP2

D2 =DT2DNG

Al = DP4MAF
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A2 = DP4DT4

A3 = DP4DNS

Hl = DP2DMA

H2 = DP2DMF

H3 = DP2DT2

H4 = DP2DP4

H15 = DP2DNG

Gi = DT4DMA

G2 = DT4DMF

G3 = DT4DT2

G4 = DT4DP4

G5 = DT4DNG

Bi = DQFMAF

B2 = DQFDT4

B3 =DQFDNS

Zi = B2*G3*D2 + B2*G5

Z2 =Bi - B2*G2

Z3 = Bi + B2*G1

Z4 =B2*G3*D1

Z5 =B2*G4

Z6 =Zi + 1"3*C2

Z7 = Z4 + Z3*C1

DENOMi = 1.0 - H1*Cl - H3*Dl

Y1 (H5 + H1*C2 + H3*D2) / DENOMI

Y2 = H2 /DENOM1

Y3 =H4 /DENOMI

DENOM2 =1.0 - A2*G4

Y4 = (A2*G5 + A1*C2 + A2*G3*D2 + A2*G1*C2) IDENOM2
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Y5 = A3 / DENOM2

Y6 = (Al + A2*G2) / DENOM2

Y7 = (Al*Cl + A2*GI*Cl + A2*G3*Dl) / DENOM2

DENOM3 = 1.0 - Y7*Y3

Y8 = (Y4 + Y7*Yl) / DENOM3

Y9 = Y5 / DENOM3

Y10 = (Y6 + Y7*Y2) / DENOM3

Z8 = Z6 + Z7*Yl + Z5*Y8 + Z7*Y3*Y8

Z9 = Z5*Y9 + Z7*Y3*Y9 + B3

Z10 = Z2 + Z7*Y2 + Z5*YlO + Z7*Y3*YlO

Yll = J5 - E2 + JI*C2 + J3*D2

Y12 = Ji*Cl + J3*Dl - El

Y13 = Y11 + Y12*Yl

Y14 = J2 + Y12*Y2

Y15 = J4 + Y12*Y3

Zll = Y13 + Y15*Y8

Z12 = Y15*Y9

Z13 = Y14 + Y15*Y1O

C

C FINAL FORM OF THE 'A' AND 'B' MATRICES.

C ! NOTE ! ELEMENTS A33 AND B31 ARE NOT COMPUTED HERE BUT WERE

C DETERMINED EXPERIMENTALLY FROM GAS TURBINE TEST DATA.

C

C FOR ACCELERATIONS USE:

C

C A33 = -0.5

C B31 = 0.5

C
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C FOR DECELERATIONS USE:

C

C A33 = -0.87

C B31 = 0.87

C

All = Zll/JG

A12 = Z12/JG

A13 = Z13/JG

A21 = Z8/JD

A22 = Z9/JD

A23 = ZlO/JD

A31 = 0.0

A32 = 0.0

A33 = -10.0

Bil = 0.0

B12 = 0.0

B21 = 0.0

B22 = -1.0 / JD

B31 =10.0

B32 =0. 0

C

W'RITE(9,*) '"A"l AND "B" MATRICES FOR NG = ,NG

WRITE(9,*) 'AND NS = ',NS

WRITE(9,*)'

WRITE(9,*)

WRITE(9,*) ' All '= All

WRITE(9,*) ' A12 = ',A12

WRITE(9,*) ' A13 = ',A13
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WRITE(9,*) A21 = , A21

WRITE(9,*) A22 = , A22

WRITE(9,*) A23 = ' A23

WRITE(9,*) A31 = , A31

WRITE(9,*) A32 = , A32

WRITE(9,*) A33 = , A33

WRITE(9,*) Bll = , Bll

WRITE(9,*) B12 = , B12

WRITE(9,*) B21 = , B21

WRITE(9,*) B22 = , B22

WRITE(9,*) B31 = , B31

WRITE(9,*) B32 = , B32

C

RETURN

END

87



APPENDIX D

• THE FOLLOWING SUBROUTINES WERE WRITTEN BY V.J. HERDA *
AND ARE USED IN VARIOUS COMBINATIONS BY THE ROUTINES VRD, *

• SC, AND SSVPD. *
* *

C
C

SUBROUTINE NGNSMF(X1 ,X2,BR)

C

C THIS SUBROUTINE PRODUCES AN INITIAL "GOOD GUESS" FOR 'MF'

C BASED ON THE SPECIFIED INPUTS, 'NG' AND 'NS'.

C

C

DIMENSION X(5),C(21),Z(5),XR(5)

C

XR(1) = Xl

XR(2) = X2

C

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)=  1.982237

C( 2)= 0.2461511
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C( 3)= -5. 147902E-02

C( 4)= -1.884269

C( 5)= -9. 572456E-02

C( 6)= 0. 7639713

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 3000.0

Z(3) = 240.0

C

NIND = 2

C

DO 686 I1 1,NIND

X(I) =XR(I)/Z(I)

686 CONTINUE

C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B 0

X= 0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K = K+1

B =B4C(K)*X(J)*XCI)

71 CONTINUE

7U CONTINUE

C
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DO 72 J = 1,NIND

K = K+l

B = B+C(K)*X(J)

72 CONTINUE

C

K = K+l

B = B+C(K)

C

C WRITE(6,84) B

C 84 FQRMAT(/,2X,'THE SCALED MF IS :',2X,G15.7)

C

C

BR =B * Z(NIND +1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XHIi = 240.0

C XLO =70.0

C

C BR = AKAXl(XLO,BR)

C BR = AMINl(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'MF IS :',2X,G15.7)

C

C

RETURN
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END

C

SUBROUTINE SUBMA(X1 ,X2,BR)

C

C THIS SUBROUTINE PRODUCES OUTPUT 'MA' FOR THE GIVEN INPUTS.

C

DIMENSION X(5),C(21),Z(5),XR(5)

C

XR(1) = Xl

XR(2) = X2

C

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= . 570198

C( 2)= -0.7270151

C( 3)= 0. 2529498

C( 4)= 0. 1880112

C( 5)= -0.6588774

C( 6)= 0.3668176

C

C SCALING FACTORS.

C

Z(i) = 36000.0

Z(2) = 43.0

Z(3) = 13000.0
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C

NIND = 2

C

DO 686 I = 1,NIND

X(I) - XR(I)/Z(I)

686 CONTINUE

C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B=0

K= 0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K = K+1

B B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+l

B = B+C(K)*X(J)

72 CONTINUE

c

K = K+I

B = B+C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED MA IS :',2X,G15.7)
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C

C

BR = B * Z(NIND + 1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XHI = 13500.0

C XLO = 5500.0

C XIII = 15000.0

C XLO = 4000.0

C

C BR = AMAX1(XLO,BR)

C BR = AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'MA IS :',2X,G15.7)

C

C

RETURN

END

C

SUBROUTINE SUBT2(XI,X2,BR)

C

C THIS SUBROUTINE PRODUCES OUTPUT 'T2' FOR THE GIVEN INPUTS.

C
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C

DIMENSION X(5),C(21),Z(5),XR(5)

C

C

XR(1) -Xl

XR(2) -X2

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= -0.5771397

C( 2)= 2. 203628

C( 3)t= -1.040498

C( 4)=: 0. 1354878

C( 5)= -0.4898891

C( 6)= 0. 7473461

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 43.0

Z(3) = 800.0

C

HIND = 2

C

711 DO 500 I = l,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C
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C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B=O

K- 0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K = K+I

B = B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+l

B = B+C(K)*X(J)

72 CONTINUE

C

K = K+l

B = B+C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED T2 IS :',2X,G15.7)

C

C

BR = B * Z(NIND + 1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.
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C

C XHI = 850.0

C XLO = 500.0

C XHI = 1000.0

C XLO = 400.0

C

C BR = AMAXI(XLO,BR)

C BR = AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'T2 IS :',2X,G15.7)

C

C

RETURN

END

C

SUBROUTINE SUBQC(XI,X2,BR)

C

C THIS SUBROUTINE PRODUCES OUTPUT 'QC' FOR THE GIVEN INPUTS.

C

DIMENSION X(5),C(21),Z(5),XR(5)

C

XR(1) = Xl

XR(2) = X2

C

C
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C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= -9.796132

C( 2)= 20.03512

C( 3)= -10.70980

C( 4)= 0.1464243

C( 5)= :.657819

C( 6)= -0.3884839

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 43.0

Z(3) = 130.0

C

NIND = 2

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B=0

K= 0

DO 70 J = 1,NIND
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DO 71 1 = J,NIND

K = K+I

B = B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+I

B = B+C(K)*X(J)

72 CONTINUE

C

K = K+1

B B+C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED QC IS :',2X,G15.7)

C

C

BR = B * Z(NIND + 1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XHI = 130.0

C XLO = 40.0

C XHI = 300.0

C XLO = 0.0

C

98



C BR = AMAX1(XLO,BR)

C BR AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'QC IS :',2X,G15.7)

C

C

RETURN

END

C

C

C

SUBROUTINE SUBP2(X1,X2,X3,X4,X5,BR)

C

C THIS SUBROUTINE PRODUCES OUTPUT 'P2' FOR THE GIVEN INPUTS.

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) = X1

XR(2) = X2

XR(3) = X3

XR(4) = X4

XR(5) = X5

C
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C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= 4. 17287

C( 2)= -2.839741

C( 3)= 1.223014

C( 4)= -1.854803

C( 5)= -10.26167

C( 6)= -0.2169524

C( 7)= -1. 156939

C( 8)= 2.860795

C( 9)= 5. 767990

C(10)= -0. 101891

C(11)= 0.2918

C(12)= -0.441640

C(13)= 0.7359644

C(14)= -9.559825

C(15)= 22.88968

C(16)= 4.7794

C(17)= -2.558953

C(18)= 0.272224

C(19)= 6.295503

C(20)= -28.57775

C(21)= 9.380198

C

C

C SCALING FACTORS.

C

Z(1M 36000.0
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Z(2) = 13000.0

Z(3) = 800.0

Z(4) = 240.0

Z(5) = 20.0

Z(6) = 43.0

C

NIND = 5

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C

C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B=0

K-0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K = K+I

B B+C(K)*X(J)*X(1)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+I
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B =B+C(K)*X(J)

72 CONTINUE

C

K = K+l

B = B+C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED P2 IS :',2X,G15.7)

C

C

BR = B * Z(NIND + 1)

C

c

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XHI = 43.0

C XLO = 20.0

C XHI = 100.0

C XLO = 0.0

C

C BR = AMAX1(XLO,BR)

C BR = AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'P2 IS :',2X,G1S.7)

C

C

RETURN
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END

C

C

SUBROUTINE SUBT4(X1,X2,X3,X4,XS,BR)

C

C THIS SUBROUTINE PRODUCES OUTPUT 'T4' FOR THE GIVEN INPUTS.

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) = Xl

XR(2) = X2

XR(3) = X3

XR(4) = X4

XR(5) = X5

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C

C( 1)=  -22.20944

C( 2)= 10.79398

C( 3)=  21.99301

C( 4)= 86.64350

C( 5)= -208.0447

C( 6)=  1.232848
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C( 7)= -12.46899

C( 8)= -64.69914

C( 9)= 180.0014

C(10)= -C.6479730

C(11)= -11.01693

C(12)= 20.21592

C(13)= 16.70037

C(14)= -121.1824

C(15)= 183. 1548

C(16)= 138.3667

C(17)= -117.2714

C(18)= -18.03533

C(19)= 72.75989

C(20)= -229.4335

C(21)= 73.97864

C

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 13000.0

Z(3) = 800.0

Z(4) = 240.0

Z(5) = 20.0

Z(6) = 1800.0

C

C

NIND = 5

104



c

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C

C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B=0

K 0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K = K+I

B B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+1

B = B+C(K)*X(J)

72 CONTINUE

C

K = K+I

B = B+C(K)

C

C WRITE(6,84) B
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C 84 FORMAT(/,2X,'THE SCALED T4 IS :',2X,G15.7)

C

C

BR = B * Z(NIND + 1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XHI = 2000.0

C XLO = 1300.0

C XHI = 5000.0

C XLO = 0.0

C

C BR = AMAX1(XLO,BR)

C BR = AMINI(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'T4 IS :',2X,G15.7)

C

C

RETURN

END

C

C

SUBROUTINE SUBQHT(Xi,X2,X3,X4,XS,BR)

C
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C THIS SUBROUTINE PRODUCES OUTPUT 'QHPT' FOR THE GIVEN INPUTS.

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) = Xl

XR(2) = X2

XR(3) = X3

XR(4) = X4

XR(5) = X5

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= 343.8178

C( 2)= -562.3596

C( 3)= -23.65895

C( 4)=  -54.97896

C( 5)=  98.09515

C( 6)= 27.8508

C( 7)= 3.591497

C( 8)= 119.9962

C( 9)=  -248.3938

C(10)= -0.1507291

C(11)= 17.95723

C(12)= -17.87346

C(13)= -40.67739

C(14)= 28.27711

107



C(15)= 190.2205

C(16)= -160.9423

C(17)= 260.8458

C(18)= 21.40023

C(19)= -34.85067

C(20)= -219.0661

C(21)= 62.16870

C

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 13000.0

Z(3) = 800.0

Z(4) = 240.0

Z(5) = 20.0

Z(6) = 130.0

C

C

C

NIND = 5

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C
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C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B 0

1( 0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K =K+1

B =B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+l

B = B+C(K)*X(J)

72 CONTINUE

C

K =K+l

B = B4C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED QHPT IS :',2X,G15.7)

C

C

BR = B * Z(NIND +1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.
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C

C XHI = 130.0

C XLO = 40.0

C XHI = 300.0

C XLO = 0.0

C

C BR = AMAX1(XLO,BR)

C BR = AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'QHPT IS :',2X,G15.7)

C

C

RETURN

END

C

SUBROUTINE SUBP4(XI ,X2,X3,BR)

C

C THIS SUBROUTINE PRODUCES OUTPUT 'P4' FOR THE GIVEN INPUTS.

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) = Xl

XR(2) = X2
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XR(3) = X3

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= 0.1926178

C( 2)= 1.158328

C( 3)=  0.1008366

C( 4)= 6.138049E-02

C( 5)= 8.429369E-02

C( 6)= -5. 136141E-02

C( 7)= -0.8789043

C( 8)= -1.171511

C( 9)= -4.834537E-02

C(10)=  1.559548

C

C

C SCALING FACTORS.

C

Z(1) = 13000.0

Z(2) = 1800.0

Z(3) = 3000.0

Z(4) = 20.0

C

C

C

C

NIND = 3

C
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711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

c

C

C

C

C CONSTRUCT THE COMIPLETE QUADRATIC EQUATION.

C

B=O

K= 0

DO 70 J3 1,NIND

DO 71 1I J,NIND

K = K+1

B =B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+l

B = B+C(K)*X(J)

72 CONTINUE

C

K =K+1

B = B+C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED P4 IS :t ,2X,G15.7)
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C
C

BR B Z(NIND + 1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XHI = 20.0

C XLO = 15.2

C XHI = 50.0

C XLO = 0.0

C

C BR = AMAX1(XLO,BR)

C BR = AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,' P4 IS :',2X,G15.7)

C

C

RETURN

END

C

SUBROUTINE SUBQFT(XI ,X2 ,X3,BR)

C

C THIS SUBROUTIN PRODUCES OUTPUT 'QFT' FOR THE GIVEN INPUTS.

C
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C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) =Xl

XR(2) =X2

XR(3) = X3

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C

C

C( 1)= 2. 192477

C( 2)= 0.8755642

C( 3)= -0. 6626919

C( 4)= 3. 892829

C( 5)= -0. 1769417

C( 6)= 1.446682E-02

C( 7)= -1. 83825

C( 8)= -7.607660

C( 9)= 0.2095135

C(10)= 3.747696

C

C SCALING FACTORS.

C

Z(1) = 13000.0

Z(2) = 1800.0

Z(3) = 3000.0
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Z(4) = 480.00

C

C

C

NIND = 3

C

711 DO 500 I = 1,NIND

XCI) = XR(I)/Z(I)

500 CONTINUE

C

C

C CONSTRUCT THE COMPLETE QUADRATIC EQUATION.

C

B=0

K= 0

DO 70 J = 1,NIND

DO 71 I = J,NIND

K = K+l

B = B+C(K)*X(J)*X(I)

71 CONTINUE

70 CONTINUE

C

DO 72 J = 1,NIND

K = K+1

B = B+C(K)*X(J)

72 CONTINUE

C

K = K+I
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B =B+C(K)

C

C WRITE(6,84) B

C 84 FORMAT(/,2X,'THE SCALED QYPT IS :',2X,G15.7)

C

C

BR = B * Z(NIND +1)

C

C

C THE FOLLOWING ENSURES THAT THE OUTPUT STAYS IN WITHIN LIMITS.

C

C XIII = 480.0

C XLO =25.0

C

C BR = AMAXl(XLO,BR)

C BR = AMIN1(XHI,BR)

C

C WRITE(6,85) BR

C 85 FORMAT(/,2X,'QFPT IS :',2X,G15.7)

C

C

RETURN

END

C

SUBROUTINE PART(A,B,MA,P2,T2,MFNG,NS,P4,T4,MAF,WW)

C
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C THIS SUBROUTINE CALCULATES THE ELEMENTS OF THE 'A' AND 'B' MATRICES

C IN THE STATE SPACE EQUATION:

C

C XDOT =A*X +B*U.

C

C

C COMMON QC,NG,P2,QH,MA,T2,MF,P4,QF,MAF,T4,NS,QD,WW

DIMENSION A(3,3),B(3,2)

REAL NG,NS,MF,MA,MAF,JG,JD,DENOM1,DENOM2,DENOM3

C

C

C

JG = 0. 009525 * 2 * 3. 14159 / 60. 0

JD =0. 6738 * 2 * 3. 14159 / 60. 0

C

C CALL SUBROUTINES TO GET PARTIAL DERIVATIVES.

C

CALL DMA(NG,P2 ,DMADNG,DMADP2)

CALL DT2( NG ,P2 ,DT2DNG ,DT2DP2)

CALL DQC( NG,P2, DQCDNG, DQCDP2)

CALL DP2(NG,MA1T2,MFP4,DP2DNG,DP2DMF,DP2DK4A,DP2DT2,DP2DP4)

CALL DT4( NG ,4A ,T2 ,MF P4 ,DT4DNG,DT4DMF,DT4DMA ,DT4DT2 ,DT4DP4)

CALL DQHT(NG,MA,T2,MF,P4,DQHDNG,DQHDMF,DQHDMA,DQHDT2 ,DQHDP4)

CALL DP4(MAF ,T4 ,NS ,DP4DNS ,DP4MAF ,DP4DT4)

CALL DQFT(MAF,T4 ,NS ,DQFDNS ,DQFMAF,DQFDT4)

CALL DQD( NS, WW ,DQDDNS, DQDDWW)

C

C COMPUTE THE COEFFICIENTS OF THE STATE SPACE EQUATIONS (I.E. THE
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C ELEMENTS OF THE 'A' AND 'B' MATRICES).

Ji DQHDMA

J2 =DQHDMF

J3 = DQHDT2

J4 =DQHDP4

JS DQHDNG

El =DQCDP2

E2 = DQCDNG

Cl = DMADP2

C2 =DMADNG

Dl = DT2DP2

D2 = DT2DNG

Al = DP4MAF

A2 = DP4DT4

A3 = DP4DNS

Hl1 = DP2DMA

H2 = DP2DMF

113 = DP2DT2

H4 = DP2DP4

H15 = DP2DNG

Gl = DT4DMA

G2 = DT4DMF

G3 = DT4DT2

G4 = DT4DP4

G5 = DT4DNG

El = DQFMAF

B2 = DQFDT4
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B3 = DQFDNS

Zi = B2*G3*D2 + B2*G5

Z2 = El + B2*G2

D3 = Bi + B2*Gl

Z4 = B2*G3*Dl

Z5 =B2*G4

Z6 = Zi + Z3*C2

V7 = Z4 + Z3*Cl

DENOMI= 1.0 - H1*Cl - H3*Dl

Yl = (H5 + Hl*C2 + H3*D2) / DENOMi

Y2 = H2 /DENOM1

Y3 = H4 /DENOMI

DENOM2 =1.0 - A2*G4

Y4 = (A2*G5 + Al*C2 + A2*G3*D2 + A2*Gl*C2) /DENOM2

Y5 = A3 / DENOM2

Y6 = (Al + A2*G2) / DENOM2

Y7 = (A1*Cl + A2*G1*C1 + A2*G3*Dl) / DENOM2

DENOM3 = 1.0 - 7Y

Y8 = (Y4 + Y7*Yl) /DENOM3

Y9 = Y5 / DENOM3

YIO = (Y6 + Y7*Y2) /DENOM3

Z8 = Z6 + Z7*Yl + Z5*Y8 + Z7*Y3*Y8

Z9 = Z5*Y9 + Z7*Y3*Y9 + B3

Z10 = Z2 + Z7*Y2 + Z5*Y1O + Z7*Y3*Y1O

Yll = J5 - E2 + J1*C2 + J3*D2

Y12 =J1*C1 + J3*Dl - El

Y13 = Y11 + Y12*Y1

Y14 =J2 + Y12*Y2
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Y15 = J4 + Y12*Y3

Zll = Y13 + Y15*Y8

Z12 = Y15*Y9

Z13 = Y14 + Y15*YlO

C

C FINAL FORM OF THE 'A' AND 'B' MATRICES.

C I NOTE I ELEMENTS A33 AND B31 ARE NOT COMPUTED HERE BUT WERE

C DETERMINED EXPERIMENTALLY FROM GAS TURBINE TEST DATA.

C

C FOR ACCELERATIONS USE:

C A33 = -0.5

C B31 = 0.5

C

C FOR DECELERATIONS USE:

C

C A33 = -0.87

C B31 = 0.87

C

All = Zll/JG

A12 = Z12/JG

A13 = Z13/JG

A21 = Z8/JD

A22 = Z9/JD

A23 = ZlO/JD

A31 = 0.0

A32 = 0. 0

A33 = -10.0
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Bil = 0. 0

B12 = 0.0

B21 = 0.0

B22 = -1.0 / JD

B31 = 10.0

B32 = 0.0

C

C IF(A12. LT. 0.0) RETURN

C IF(A13.LT.0.0) RETURN

C IF(A21.LT.O.0) RETURN

C IF(A23.LT.O.0) RETURN

C IF(All.GT.O.0) RETURN

C IF(A22.GT.0.0) RETURN

WRITE(9,*) "A" AND "B" MATRICES FOR NG = ',NG

WRITE(9,*) AND NS = ',NS

WRITE(9,*) '

WRITE(9,*)

WRITE(9,*) All = , All

WRITE(9,*) A12 = , A12

WRITE(9,*) A13 = , A13

WRITE(9,*) A21 = , A21

WRITE(9,*) A22 = , A22

WRITE(9,*) A23 = , A23

WRITE(9,*) A31 =, A31

WRITE(9,*) A32 =, A32

WRITE(9,*) A33 = , A33

WRITE(9,*) B l = , Bll

WRITE(9,*) B12 =, B12
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WRITE(9,*) ' B21 = ' B21

WRITE(9,*) ' B22 = ', B22

WRITE(9,*) ' B31 = ' B31

WRITE(9,*) ' B32 = B32

C

WRITE(6,*) ' All = , All

WRITE(6,*) ' A12 = , A12

WRITE(6,*) ' A13 =, A13

WRITE(6,*) ' A21 = , A21

WRITE(6,*) ' A22 = , A22

WRITE(6,*) ' A23 =, A23

C

RETURN

END

C

SUBROUTINE DMA(Xl ,X2,DMADNG,DMADP2)

C

C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DMA/DNG, DMA/DP2

C

C

DIMENSION X(5) ,C(21) ,Z(5) ,XR(5)

C

XR(l) = Xl
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XR(2) = X2

C

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= 1.570198

C( 2)= -0.7270151

C( 3)=  0.2529498

C( 4)= 0.1880112

C( 5)=  -0.6588774

C( 6)= 0.3668176

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 43.0

Z(3) = 13000.0

C

NIND = 2

C

DO 686 1 1,NIND

X(I) = XR(I)/Z(I)

686 CONTINUE

C

C

DMADNG = 2.0*C(1)*X(1) + C(2)*X(2) + C(4)

DMADNG = DMADNG*Z(3)/Z(1)

C
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DMADP2 = C(2)*X(1) + 2.0*C(3)*X(2) + C(5)

DMADPZ = DMADP2*Z(3)/Z(2)

C

C

C

RETURN

END

C

SUBROUTINE DT2(X1 ,X2 ,DT2DNG,DT2DP2)

C

C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DT2/DNG, DT2/DP2

C

C

C

DIMENSION X(5),C(21),Z(5),XR(5)

C

C

XR(1) = X1

XR(2) = X2

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= -0.5771397a

124



C( 2)= 2. 203628

C( 3)= -1.040498

C( 4)= 0. 1354878

C( 5)= -0.4898891

C( 6)= 0.7473461

C SCALING FACTORS.

C

Z(l) = 36000.0

Z(2) = 43.0

Z(3) = 800.0

C

NlNl= 2

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C

DT2DNG = 2.0*CC1)*XC1) + C(2)*X(2) + C(4)

DT2DNG = DT2DNG*Z(3)/Z(1)

C

DT2DP2 = CC2)*X(1) + 2.0*C(3)*X(2) + C(5)

DT2DP2 = DT2DP2*ZC3)1Z(2)

C

C

RETURN
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END

C

SUBROUTINE DQC(XI,X2,DQCDNG,DQCDP2)

c

C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DQC/DNG, DQC/DP2

C

C

DIMENSION X(5),C(21),Z(5),XR(5)

C

XR(2) = Xl

XR(2) = X2

C

C

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= -9.796132

C( 2)= 20.03512

C( 3)= -10.70980

C( 4)= 0.1464243

C( 5)= 1.657819

C( 6)= -0.3884839

C
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C SCALING FACTORS.

C

Z(1) = -.6000.0

Z(2) = 43.0

Z(3) = 130.0

C

NIND = 2

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

DQCDNG = 2.0*C(1)*X(l) + C(2)*X(2) + C(4)

DQCDNG = DQCDNG*Z(3)/Z(1)

C

DQCDP2 = C(2)*X(1) + 2.0*C(3)*X(2) + C(5)

DQCDP2 = DQCDP2*Z(3)/Z(2)

C

C

RETURN

EN)

C

C

C

SUBROUTINE DP2(Xl,X2,X3,X4,X5 ,DP2DNG,DP2DMF,DP2DMA,DP2DT2,DP2DP4)



C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DP2/DNG, DP2/DKF

C

C

DIMENSION X(S),C(21),Z(6),XR(5)

C

C

XR(1) = Xl

XR(2) = X2

XR(3) = X3

XR(4) = X4

XR(5) = X5

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= 4. 17287

C( 2)= -2.839741

C( 3)= 1.223014

C( 4)= -1.854803

C( 5)= -10.26167

C( 6)= -0.2169524

C( 7)= -1. 156939

C( 8)= 2.860795

C( 9)= 5. 767990

C(10)= -0.101891

C(11)= 0.2918
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C(12)= -0.441640

C(13)= 0.7359644

C(14)= -9.559825

C(15)= 22.88968

C(16)= 4.7794

C( 17)= -2. 558953

C(18)= 0.272224

C(19)= 6.295503

C(20)= -28.57775

C(21)= 9.380198

C

C

C SCALING FACTORS.

C

Z(1 = 36000.0

Z(2) = 13000.0

Z(3) = 800.0

Z(4) = 240.0

Z(5) = 20.0

Z(6) = 43.0

C

NIND = 5

C

711 DO 500 I = 1,NIND

X(I) =XR(I)/Z(I)

500 CONTINUE

C

C
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DP2DNG = 2*C(1)*X(1) + C(2)*X(2) + C(3)*X(3) + C(4)*X(4)

1 + C(5)*X(5) + C(16)

DP2DNG = DP2DNG*Z(6)/Z(l)

C

DP2DMF = C(4)*X(l) + CC8)*X(2) + C(11)*X(3) + 2*C(13)*X(4)

1 + C(14)*X(5) + C(19)

DP2DMF = DP2DMF*Z(6)/Z(4)

C

DP2DMA = C(2)*X(1) + C(7)*X(3) + C(8)*XC4) + 2*C(6)*X(2)

1 + C(9)*X(5) + C(17)

DP2DMA = DP2DMA*Z(6)/Z(2)

C

DP2DT2 = C(3)*X(l) + C(7)*X(2) + C(11)*X(4) + 2*C(10)*X(3)

1 + C(12)*X(5) + C(18)

DP2DT2 = DP2DT2*Z(6)/Z(3)

C

DP2DP4 = C(5)*X(l) + C(9)*X(2) + C(12)*X(3) + 2*C(15)*X(5)

1 + C(14)*X(4) + C(20)

DP2DP4 = DF2DP4*Z(6)/Z(5)

C

C

C

C

RETURN

END

C

C
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SUBROUTINE DT4(X1 ,X2,X3,X4,X5,DT4DNG,DT4DMF,DT4DMA, DT4DT2,DT4DP4)

C

C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DT4/DNG, DT4/DMF

C

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) = Xl

XR(2) = X2

XR(3) = X3

XR(4) = X4

XR(5) = X5

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C

C( 1)= -22.20944

C( 2)=  10. 79398

C( 3)= 21.99301

C( 4)= 86. 64350

C( 5)=  -208.0447

C( 6)= 1.232848
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C( 7)= -12.46899

V( 8)= -64.69914

CQ 9)= 180.0014

C(10)= -0.6479730

C(11)= -11.01693

C( 12)= 20. 21592

C(13)= 16.70037

C(14)= -121.1824

C(15)= 183. 1548

C(16)= 138.3667

C(17)= -117.2714

C(18)= -18.03533

C(19)= 72.75989

C(20)= -229.4335

C(21)= 73.97864

C

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 13000.0

Z(3) = 800.0

Z(4) = 240.0

Z(5) = 20.0

Z(6) = 1800.0

C

C

NIND = 5
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C

711 DO 500 1 = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

DT4DNG = 2*C(1)*XC1) + C(2)*X(2) + C(3)*XC3) + CC4)*XC4)

1 + C(S)*X(5) +- C(16)

DT4DNG = DT4DNG*Z(6)/Z(l)

C

DT4DMF =C(4)*X(1) + C(8)*X(2) + C(11)*X(3) + 2*C(13)*X(4)

1 + C(14)*X(5) + C(19)

DT4DMF =DT4DMF*Z(6)/Z(4)

C

DT4DMA = C(2)*X(1) + C(7)*X(3) + C(8)*X(4) + 2*C(6)*X(2)

1 + C(9)*X(5) +- C(17)

DT4DMA =DT4DMA*Z(6)/Z(2)

C

DT4DT2 = C(3)*X(1) + C(7)*X(2) + C(11)*XC4) + 2*C(10)*X(3)

1 + C(12)*X(5) + C(18)

DT4DT2 = DT4DT2*Z(6)IZ(3)

C

DT4DP4 = C(5)*XC1) + C(9)*X(2) + C(12)*XC3) + 2*C(15)*X(5)

1 + C(14)*X(4) + C(20)

DT4DP4 = DT4DP4*Z(6)/Z(5)

C

C

C
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C

RETURN

END

C

C

SUBROUTINE
X2,X3,X4,X5 ,DQHDNG,DQHDMF,DQHDMA,DQHDT2,DQHDP4)SSM15520

******h ** **. .... . .......................AA A A A A :. fA f****SSM15530

C

C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DQH/DNG, DQH/DMF, DQH/DMA, DQH/DT2, DQH/DP4

C

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(1) = Xl

XR(2) = X2

XR(3) = X3

XR(4) = X4

XR(5) = X5

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C( 1)= 343.8178
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C( 2)= -562. 3596

C( 3)= -23. 65895

C( 4)= -54.97896

C( 5)= 98.09515

C( 6)= 217.8508

C( 7)= 3.591497

C( 8)= 119.9962

C( 9)= -248.3938

C(10)= -0.1507291

C(11)= 17.95723

C(12)= -17.87346

C(13)= -40.67739

C(14)= 28.27711

C(15)= 190.2205

C(16)= -160.9423

C(17)= 260.8458

C(18)= 21.40023

C(19)= -34.85067

C(20)= -219.0661

CC21)= 62. 16870

C

C

C SCALING FACTORS.

C

Z(1) = 36000.0

Z(2) = 13000.0

Z(3) = 800.0

Z(4) = 240.0
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Z(5) = 20.0

Z(6) = 130.0

C

c

C

NIND = 5

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C

DQHDNG =2*C(1)*X(1) + C(2)*X(2) + C(3)*X(3) + C(4)*X(4)

1 + C(5)*X(5) + C(16)

DQHDNG DQIDNG*Z(6)IZ(1)

C

DQHDMF =C(4)*X(l) + C(8)*X(2) + C(11)*X(3) + 2*C(13)*X(4)

1 + C(14)*X(5) + C(19)

DQHDMF =DQHDMF*ZC6)/z(4)

C

DQHDMA =C(2)*X(1) + C(7)*x(3) + C(8)*X(4) +2*C(6)*.X(2)

1 + C(9)*X(5) + C(17)

DQHDMA =DQHDMA*ZC6)/Z(2)

C

DQHDT2 =C(3)*X(1) + C(7)*X(2) + C(11)*X(4) + 2*C(1O)*X(3)

1 + C(12)*X(5) + C(18)

DQHDT2 =DQHDT2*Z(6)/Z(3)
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C

DQHDP4 = C(5)*X(1) + C(9)*X(2) + C(12)*X(3) + 2*C(15)*X(5)

1 + C(14)*X(4) + C(20)

DQHDP4 = DQHDP4*Z(6)/Z(5)

C

C

RETURN

END

C

SUBROUTINE DP4(X1 ,X2 ,X3 ,DP4DNS ,DP4MAF ,DP4DT4)

C*********** ~******************

C

C THIS SUBROUTINE PPODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DP4/DNS

C

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C

C

XR(l) = X1

XR(2) = X2

XR(3) = X3

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.
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C

C( 1)= 0.1926178

C( 2)= 1.158328

C 3)= 0.1008366

C( 4)= 6.138049E-02

C( 5)= 8.429369E-02

C( 6)= -5.136141E-02

C( 7)= -0.8789043

C( 8)= -1.171511

C( 9)=  -4.834537E-02

C(10)= 1.559548

C

C

C SCALING FACTORS.

C

Z(1) = 13000.0

Z(2) = 1800.0

Z(3) = 3000.0

Z(4) = 20.0

C

C

C

C

NIND = 3

C

711 DO 500 I = 1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

138



C

C

DP4DNS = C(3)*X(1) + C(5)*X(2) + 2*C(6)*X(3) + C(9)

DP4DNS = DP4DNS*Z(4)/Z(3)

C

DP4MAF = C(2)*X(2) + C(3)*X(3) + 2*C(1)*X(1) + C(7)

DP4MAF = DP4MAF*Z(4)/Z(l)

C

DP4DT4 = C(2)*X(1) + C(5)*X(3) + 2*C(4)*X(2) + C(8)

DP4DT4 = DP4DT4*Z(4)/Z(2)

C

C

RETURN

END

C

SUBROUTINE DQFT(X1 ,X2 ,X3 ,DQFDNS ,DQFMAF,DQFDT4)

C

C

C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DQF/DNS, DQF/DMAF, DQF/DT4

C

C

C

DIMENSION X(5),C(21),Z(6),XR(5)

C
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C

XR(1) = Xl

XR(2) = X2

XR(3) = X3

C

C COEFFICIENTS OF THE QUADRATIC CURVE FIT.

C

C

C

C( 1)= 2. 192477

C( 2)= 0.8755642

C( 3)= -0.6626919

C( 4)= 3. 892829

C( 5)= -0. 1769417

C( 6)= 1.446682E-02

C( 7)= -1.83825

C( 8)= -7.607660

C( 9)= 0.2095135

C(10)= 3.747696

C

C SCALING FACTORS.

C

Z(1 = 13000.0

Z(2) = 1800.0

Z(3) = 3000.0

Z(4) = 480.00

C

C
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L
C

NIND =3

C

711 DO 500 1 =1,NIND

X(I) = XR(I)/Z(I)

500 CONTINUE

C

C

C

DQFDNS = C(3)*X(1) + C(5)*X(2) + 2*C(6)*X(3) + C(9)

DQFDNS = DQFDNS*Z(4)/Z(3)

C

DQFMAF = C(2)*X(2) + C(3)*X(3) + 2*C(1)*X(1) + C(7)

DQFMAF = DQFMAF*Z(4)/Z(1)

C

DQFDT4 =C(2)*X(1) + C(5)*X(3) + 2*C(4)*X(2) + C(8)

DQFDT4 = DQFDT4*Z(4)/Z(2)

C

C

C

RETURN

END

C

SUBROUTINE DQD(X1 ,X2 ,DQDDNS ,DQDDWW)

C

C
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C THIS SUBROUTINE PRODUCES THE FOLLOWING PARTIAL DERIVATIVES:

C

C DQD/DNS, DQD/DWW

C

C

C SCALING FACTORS

C

XQD = 480.

XNS = 3000.

XWW = 49.

C

Cl -20.0

C2 4.OE-6

C3 1. 19294E-5

C

DQDDNS = 2*X1*C2 + 2*C3*(X2**1.3)*Xl

C

DQDDWW = 1. 3*C3*Xl*Xl*(X2**0.3)

C

C DQDDNS = DQDDNS*XNS/XQD

C DQDDWW = DQDDWW*XWW/XQD

C

C

C

RETURN

END
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APPENDIX E

TITLE GT DYNAMIC PROGRAM

* BOEING MODEL 502-6A GAS TURBINE *

• DYNAMIC COMPUTER SIMULATION *

MODIFIED BY *

* V.A. STAMMETTI *

* FROM A ROUTINE BY *

* V.J. HERDA *

• THIS PROGRAM SIMULATES THE DYNAMIC RESPONSE OF THE NPS *

* BOEING GAS TURBINE TEST FACILITY USING A MULTILPLE *

* LINEARIZATION TECHNIQUE.*

C

C

PARAM JG=0.009525, JD-0.6738, PI=3.14159, T = 2.0 , TW2.0 , TW1=.0
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*i

* THE FOLLOWING VALUES LISTED ON THE FUNCTION CARD ARE FOR FUEL FLOW,

* GAS GENERATOR SPEED, AND DYNO SPEED AS A FUNCTION OF TIME.

* THESE VALUES WERE OBTAINED FROM STRIP CHART RECORDS AND ARE ENTERED

IN THE FORM (E.G. FUEL FLOW) ... TIME(SEC), FUEL FLOW .....

* THIS SET IS FOR EXPERIMENTAL RUN # 1.

C

C THIS SET IS FOR EXPERIMENTAL RUN # 4.

C

C

AFGEN NGDATA= 0.0,34900.0, 5.0,34900.0, 10.0,34900.0, 15.0,34900.0,

20.0,34900.0, 25.0,34900.0, 30.0,34900.0, 35.0,34900.0

AFGEN NSDATA= 0.0,570.0, 1.0,570.0, 3.0,570.0, 5.0,597.67, ...

6.0,653.0, 7.0,708.4, 8.0,791.4, 9.0,846.7, 10.0,929.8,

11.0,1040.5, 12.0,1178.8, 13.0,1344.9, 14.0,1566.3,

15.0,1787.7, 16.0,2009.1, 17.0,2230.5, 18.0,2451.9,

19.0,2590.2, 20.0,2673.3, 21.0,2756.3, 22.0,2839.3,

23.0,2894.65, 24.0,2950.0, 25.0,2950.0, 26.0,2950.0,

35.0,2950.0

AFGEN MFDATA= 0.0,193.5, 4.0,193.5, 5.0,195.6, 6.0,197.7,

7.0,197.7, 8.0,197.7, 9.0,199.75, 10.0,199.75,

11.0,199.75, 12.0,201.8, 13.0,201.8, 14.0,203.9,

15.0,203.9, 16.0,206.0, 20.0,206.0, 25.0,206.0,

30.0,206.0, 35.0,206.0

AFGEN QDDATA= 0.0,450.0, 4.0,450.0, 5.0,445.1, 6.0,445.1,

7.0,435.4, 8.0,425.6, 9.0,415.8, 10.0,406.1, ...

11.0,391.1, 12.0,376.8, 13.0,362.1, 14.0,332.9,
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15.0,313.3, 16.0,288.9, 17.0,274.3, 18.0,264.5,

19.0,259.6, 20.0,254.8, 21.0,245.0, 25.0,245.0,

30.0,245.0, 35.0,245.0

INITIAL

ESTABLISH INITIAL CONDITIONS.

NGI=34900.0

NSI=570.0

MFI = 193.5

QDI = 450.0

ESTABLISH FINAL CONDITIONS

NGF=34900.0

NSF=2950.0

QDF = 206.00

MFF = 245.0
*i

SET INITIAL STATE PERTURBATION TO ZERO

DNG = 0.0

DNS = 0.0

DE = 0.0

EO = MFI
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NGB = 26000. 0

NSB = 1750.0

DYNAMI C

* DATA CURVE FORMULATION

*G FE(NDTIE

NGD = AFGEN(NSDATA,TIME)

NSD = AFGEN(NSDATA,TIME)

QDD = AFGEN(QDDATA,TIME)

*STATE SPACE LINEAR MODEL FORMULATION

All = -1.O0EXP(-6.9929E-0l*(NSL/NSB) + 5.5831E+OO*(NGL/NGB)

-3. 2433E+00)

A12 = -1.0*EXP(-2.8415E+OO*(NSL/NSB) + 7.9978E+0O*(NGL/NGB)

-4. 4662E+00)

* A13 = (2. 1503E+03)*((NSL/NSB)**2.O)

* + (-5.9752E+O'.)*(NSL/NSB)*CNGL/NGB)..

* + (-5.0697E+03)*((NGL/NGB)**2.0) + (1. 3101E+03)*(NSL/NSB)..

* + (1.8551E+04)*(NGL/NGB) - 9.1460E+03

A13 = EXP(-O.45788*(NSL/NSB) + 1.189*(NGL/NGB) +6.8305)
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A21 =(1. 5312E-O1)*((NSL/NSB)**2. 0)..

+ (-9. 5351E-01)*(NSL/NSB)*(NGL/NGB)..

+ (1. 5745E+O0)*((NGL/NGB)**2. 0) + (5. 1810E-01)*(NSL/NSB)

+ (-1.6232E+00)*(NGL/NGB) + 4.6015E-01

A22 =(5.6875E-02)*(NSL/NSB) + (-1.3166E+O0)*(NGL/NGB)..

+ 3.9862E-01

*A23 =(-1. 7434E+O1)*((NSL/NSB)**2. 0)..

*+ (3. 5345E+O1)*(NSL/NSB)*(NGL/NGB)..

* + (4. 5787+O1)*((NGL/NGB)**2. 0) + (1. 0894E+01)*(NSL/NSB)

+ (-2.051OE+02)*(NGL/NGB) + 1.5265E+02

A23 = EXP(O.92011*(NSL/NSB) -4. 2549*(NGL/NGB) + 6. 2290)

A3* .

A32 = 0.0

A33 = -0. 0

A33 = -0.0

B12 = 0.0

B21 = 0.0

B22 = -14. 1723156
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B31 = 10. 0

B32 = 0. 0

A= 1. 0

B = -2.0*(All + A22)

C = All*A22 - A21*A12

IMCHK = B**2.0 - 4.0*A*C

IF(IMCHK.LT.0.0) IMCHX = 0.0

LAMDAI = (-B + SQRT(IMCHK))/2. 0/A

LAMDA2 = (-B - SQRT(IMCHK))/2.0/A

DERIVATIVE

NOSORT

* COMPUTE INPUTS TO THE MULTIPLE LINEARIZATION MODEL.

* RUN 11

DMF = MFD - flFI

DQD = QDD - QDI

DNGDOT = Al1*DNG + A12*DNS + A13*DE

DNSDOT = A21*DNG + A22*DNS + A23*DE + B22*DQD

DEDOT =A33*DE + B31*DMF

* DYNAMIC EQUATIONS FOR MULTIPLE LINEARIZATION MODEL.

DNG=INTGRL(0. 0 ,DNGDOT)

DNS=INTGRL(0 ,DNSDOT)
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DE =INTGRL(0.0,DEDOT)

NGL = NGI + DNG

NSL = NSI + DNS

SORT

* THE STATEMENTS IN THE PREVIOUS (DERIVATIVE) SECTION YIELD VALUES

* OF 'NG', AND 'NS' AS CALCULATED MULTIPLE LINEARIZATION MODEL.

* MODELS. THE STATEMENTS BELOW ARE THE DSL STATEMENTS THAT SPECIFY

* THE VARIOUS SIMULATION SETTINGS.

TERMINAL

METHOD RK5

C RELERR NS = 1.E-6, NG = I.E-6, DNS = 1.E-6, DNG = 1.E-6

C ABSERR NS = I.E-5, NG = I.E-5, DNS = I.E-5, DNG = I.E-5

CONTROL FINTIM=35.0,DELT=0. 001

C PRINT .5,NS,QFPT,T4

C PRINT 0.5,NS,NSL,NSD,NG,NGL,NGD,E,WWM

PRINT .35,NGD,NGL,NSD,NSL

C PRINT .5,DNG,DNS,DE

C PRINT .5,P2GIP4CI,P2,P4,NSD,NS,NSL,NG,NGL

C PRINT .5,QD,QDM,QHPT,QFPT,QC,E,EF,KFM

* SAVE 1.0,MFM,NG,NGD,NS,NSD

SAVE .05,MFD,NGD,NSD,NGL,NSL,E,EF,QDD

* RUN #1

* GRAPH (DE--TEK618) TIME(LO=O.O,SC=0.2,TI=.50,NI=10,UN=SEC) ...
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*NS(L0=900,SC=100,TI=1. 6NI=5,UN=R'M) ...

*NSD(LO=9OOSC=1OO,TI=1. 6,NI=5,UN=RPM)..

*NSL(L0=900,SC=100,TI=1. 6,N1=5,UN=RPM) ...

* FF(LQ=100,SC=1O. ,TI=2. ,NI=4,UN=tLB/HR')

* MFM(L0=100,SC=1O.,T=2. ,NI=4,UN&'LB/HR')

* NG(L0=24000,SC=1000,T11. 1428,NI=7,UN=RPI)

* NGD(LQ=-24000,SC=1000,TI=1. 1428,NI=7,UN=RPM)

* NGF(LO=24000,SC=1000,TI=1. 1428,NI=7,UN-RPM)

* RUN #4

*GRAPH (DE=TEK618) TIME(L0O. O,SC=O. 2,TI=.50,NI=1O,UN=SEC)..

*NG(LO=24000,SC=1000,TI=1. 33,NI=6,UNRPI)..

*NGD(LO=24000,SC=1000,TI=1. 33,NI=6,UN=RPM)..

*NS(L0=700,SC=100,TI=1. 6,NI=5,UN=RPM)..

*NSD(LO=700,SC=100,TI=1. 6NI=5,UN=RPM) ...

* IIMFI(LO=100,SC=1O. ,TI=1. 6,NI=5,UN=tLB/HR')

* RUN #4

*GRAPH (DE=TEK618) TIME(LO=O. O,SC=O. 2,T=. 50,NI=1O,UN=SEC)..

*NG(L0=21000,SC=1000,TI=1. 33,N1=6,UN=RPM) ...

*NGD(LQ=21000,SC=1000,TI=1. 33,NI=6,UN-RPM)..

*NS(L0-900,SO=100,T112. O,NI4,UN=RPM)..

* NSD(L0=900,SC=100,TI=2. O,NI=4,UN=RPM) ...

* MFM(LO=80,SC=1O. ,T1=2. ,NI=4,UN='LB/HR')

* RUN #11 THIS IS FOR THESIS PRESENTATION FIGURES
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GRAPH (G2, DE=-TEK618) TIME(L00O.ONI=15,TI=.50,UN=SEC)..

NSD(LO=250,SC=100,TI=. 25,NI=36,UN=RPM)..

*NS(LO=500,SC=lOO,TI=. 25,NI=36,UN=SEC)..

NSL( L0250,SC=100 ,TI=. 25 ,N=36 ,UN=RPM)

* EF(LQ=-80. ,SC=1O. ,T1Z. ,NI=4,UN=LB/HRt )..

* MFM(L0=80. ,SC=1O.,TI=2. ,N=4UN&'LB/HR')

GRAPH (Gi, DE-TEK618) TIME(L00O.O,TI.50,NI=15,UN=SEC)..

NGD(LO=-20000,SC=1000,TI=. 25,NI=36,UN=RPM) ...

* NG(LO=30000,SC=lOOO,TI=. 25,NI=36,UN=RPM)..

NGL(LO=-2OOOO,SC=1OOO,TI=. 25,N1=36,UN=RPM)

GRAPH (G3, DE-TEK618) TIME(LO=O. O,TI=. 50,NI=15,UN='LB/HR')..

* E(LO=180.O,SC=1O .,TI=.5 ,NI=14,UN=-'LB/HR')

* EF(LO=1BO. ,SC=1 ,TI=.5 ,NI=14,UN='LB/HR')

* MFD(LO=180. ,SC=1O ,TI=. 5 NI=14,UN='LB/HR')

* GRAPH (G2, DE=-TEK6l8) TIME, NSD, NS, NSF

* GRAPH (Gi, DE=TEK618) TIME, NGD, NG, NGF

LABEL (Gi) GAS GENERATOR SPEED

LABEL (G2) DYNAMOMETER SPEED

C

END

STOP

C FORTRAN

C
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APPENDIX F

COMPARISON OF "A" MATRIX COEFFICIENTS

Tables 4-9 compare the individual state space "A" matrix

coefficients used in the dynamic computer simulation to

those obtained from the Smoothed Dynamic Transition Map.

The equation used by the dynamic simulation to calculate a

particular coefficient is specified in each table by note 3.

The scaling factors NSB = 1750 rpm and NGB = 26000 rpm were

used to scale the variables NSL and NGL for a two variable

linear regression in the forms shown.
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TABLE 4

All MATRIX COEFFICIENT CORRELATION DATA

NS = 500 RPM 1000 1500 2000 2500

NG 37000 RPM -90.21 -73.87 -60.49 -49.54 -40.56

35000 -58.71 -48.08 -39.37 -32.34 -26.40

32000 -30.83 -25.25 -20.67 -16.93 -13.86
(-40.00) (-25.00) (-16.00) (-12.00) (-12.00)

30000 -20.06 -16.43 -13.45 -11.02 -9.02
(-25.00) (-20.00) (-14.50) (-10.00) (-9.00)

25000 -6.86 -5.62 -4.59 -3.77 -3.08
(-11.00) (-5.00) (-4.50) (-4.50) (-4.50)

23000 -4.46 -3.65 -2.99 -2.45 -2.01

22000 -3.60 -2.95 -2.41 -1.98 -1.62
(-2.00) (-2.20) (-2.20) (-2.10) (-2.00)

20000 -2.34 -1.92 -1.57 -1.29 -1.05

17000 -1.23 -1.00 -0.83 -0.68 -0.55

15000 -0.80 -0.65 -0.54 -0.44 -0.36

NOTES: 1). VALUES WITHOUT PARENTHESES ARE SIMULATION VALUES.
2). VALUES IN PARENTHESES ARE VALUES FROM THE SMOOTHED

DYNAMIC TRANSITION MAP.
3). THE TWO VARIALBLE LINEARLY REGRESSED EQUATION FOR

MATRIX COEFFICIENT All IS:

All = -1.0*EXP(-6.9929E-01*(NSL/NSB) +
5.5831*(NGL/NGB) - 3.2433)
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TABLE5

A12 MATRIX COEFFICIENT CORRELATION DATA

NS = 500 RPM 1000 1500 2000 2500

NG = 37000 RPM -447.39 -198.65 -88.21 -39.17 -17.39

35000 -241.82 -107.38 -47.68 -21.17 -9.40

32000 -96.09 -42.67 -18.95 -8.41 -3.74
(-70.00) (-35.00) (-5.40) (-12.00) (-2.50)

30000 -51.94 -23.06 -10.24 -4.55 -2.02
(-50.00) (-28.00) (-12.50) (-4.60) (-2.00)

25000 -11.16 -4.95 -2.19 -0.98 -0.43
(-25.00) (-7.00) (-2.50) (-0.90) (-0.50)

23000 -6.03 -2.68 -1.19 -0.53 -0.23

22000 -4.43 -1.97 -0.87 -0.39 -0.17
(-3.00) (-0.60) (-0.50) (-0.40) (-0.20)

20000 -2.39 -1.06 -0.47 -0.21 -0.09

17000 -0.95 -0.42 -0.19 -0.08 -0.04

15000 -0.51 -0.23 -0. 10 -0.05 -0.02

NOTES: 1). VALUES WITHOUT PARENTHESES ARE SIMULATION VALUES.
2). VALUES IN PARENTHESES ARE VALUES FROM THE SMOOTHED

DYNAMIC TRANSITION MAP.
3). THE TWO VARIALBLE LINEARLY REGRESSED EQUATION FOR

MATRIX COEFFICIENT A12 IS:

A12 = -1.0*EXP(-2.8415*(NSL/NSB) +
7.9978*(NGL/NGB) - 4.4662)
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TABLE6

A13 MATRIX COEFFICIENT CORRELATION DATA

NS = 500 RPM 1000 1500 2000 2500

NG = 37000 RPM 4410.37 3869.54 3395.03 2978.71 2613.44

35000 4024.89 3531.33 3098.29 2718.36 2385.01

32000 3508.91 3078.62 2701.10 2369.87 2079.26
(4500.00) (3050.00) (2200.00) (1990.00) (2000.00)

30000 3202.22 2809.54 2465.01 2162.74 1897.53
(4400.00) (3020.00) (2100.00) (1920.00) (1900.00)

25000 2547.69 2235.28 1961.17 1720.68 1509.68
(2700.00) (2550.00) (1800.00) (1760.00) (1800.00)

23000 2325.02 2039.91 1798.76 1570.29 1377.73

22000 2221.09 1948.72 1709.76 1500.09 1316.14
(1800.00) (1550.50) (1450.00) (1430.00) (2000.00)

20000 2026.96 1778.39 1560.32 1368.98 1201.11

17000 1767.11 1550.41 1360.29 1193.48 1047.13

15000 1612.66 1414.90 1241.39 1089.17 955.61

NOTES: 1). VALUES WITHOUT PARENTHESES ARE SIMULATION VALUES.
2). VALUES IN PARENTHESES ARE VALUES FROM THE SMOOTHED

DYNAMIC TRANSITION MAP.
3). THE TWO VARIALBLE LINEARLY REGRESSED EQUATION FOR

MATRIX COEFFICIENT A13 IS:

A1 = -I.O*EXP(-O.45788*(NSL/NSB) +
1.1890*(NGL/NGB) + 6,8305)
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TABLE 7

A21 MATRIX COEFFICIENT CORRELATION DATA

NS = 500 RPM 1000 1500 2000 2500

NG = 37000 RPM 1.11 0.91 0.73 0.58 0.45

35000 0.92 0.74 0.58 0.45 0.35

32000 0.67 0.52 0.39 0.29 0.22
(0.70) (0.50) (0.40) (0.30) (0.25)

30000 0.53 0.40 0.29 0.22 0.16
(0.50) (0.40) (0.30) (0.20) (0.15)

25000 0.25 0.18 0.13 0.09 0.09
(0. 30) (0. 20) (0. 10) (0. 10) (0. 10)

23000 0.18 0.12 0.09 0.08 0. 10

22000 0.14 0.09 0.08 0.08 0. 11
(0. 10) (0. 10) (0. 10) (0. 10) (0. 10)

20000 0.09 0.07 0.07 0.09 0.15

17000 0.05 0.06 0.09 0.15 0.23

15000 0.05 0.08 0.13 0.21 0.31

NOTES: 1). VALUES WITHOUT PARENTHESES ARE SIMULATION VALUES.
2). VALUES IN PARENTHESES ARE VALUES FROM THE SMOOTHED

DYNAMIC TRANSITION MAP.
3). THE TWO VARIALBLE LINEARLY REGRESSED EQUATION FOR

MATRIX COEFFICIENT A21 IS:

A21 = (-1.5312E-01)*((NSL/NSB)**2.0) + (-9.5315E-01)*(NSL/NSB)*(NGL/NGB)
(1.5745)*((NGL/NGB)*2.0) + (5.1810E-01)*(NSL/NSB) +
(-1.6232)*(NGL/NGB) + 4.6015E-01

156



L

TABLE 8

A22 MATRIX COEFFICIENT CORRELATION DATA

NS = 500 RPM 1000 1500 2000 2500

NG = 37000 RPM -1.46 -1.44 -1.43 -1.41 -1.39

35000 -1.36 -1.34 -1.31 -1.29 -1.28

32000 -1.21 -1.19 -1.17 -1.16 -1.14
(-1.05) (-1.20) (-1.25) (-1.25) (-1.20)

30000 -1.10 -1.08 -1.07 -1.06 -1.04
(-0. 95) (-1.10) (-1. 10) (-1.10) (-1.00)

25000 -0.85 -0.83 -0.82 -0.80 -0.79
(-0.85) (-0.90) (-0.85) (-0.80) (-0.70)

23000 -0.75 -0.73 -0.72 -0.70 -0.68

22000 -0.69 -0.68 -0.67 -0.65 -0.63
(-0.75) (-0.80) (-0.70) (-0.60) (-0.50)

20000 -0. 59 -0.58 -0.57 -0.55 -0.53

17000 -0.45 -0.43 -0.41 -0.39 -0.38

15000 -0.34 -0.33 -0.31 -0.29 -0.28

NOTES: 1). VALUES WITHOUT PARENTHESES ARE SIMULATION VALUES.
2). VALUES IN PARENTHESES ARE VALUES FROM THE SMOOTHED

DYNAMIC TRANSITION MAP.
3). THE TWO VARIALBLE LINEARLY REGRESSED EQUATION FOR

MATRIX COEFFICIENT A22 IS:

A22 = (5.6875E-02)*(NSL/NSB) + (-1.3166)*(NGL/NGB)
+ 3.9862E-01
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TABLE 9

A23 MATRIX COEFFICIENT CORRELATION DATA

NS = 500 RPM 1000 1500 2000 2500

NG = 37000 RPM 1.55 2.01 2.62 3.41 4.43

35000 2.15 2.79 3.63 4.72 6.14

32000 3.51 4.56 5.93 7.72 10.04
(4.00) (4.00) (4.00) (9.00) (10.00)

30000 4.87 6.33 8.23 10.71 13.93
(4.00) (4.00) (9.00) (15.00) (15.00)

25000 11.03 14.35 18.66 24.27 31.57
(5.00) (20.00) (24.50) (26.00) (28.00)

23000 15.30 19.90 25.89 33.67 43.79

22000 18.02 30.49 39.66 51.58 67.09
(25.50) (30.00) (32.00) (34.00) (35.00)

20000 25.00 32.52 42.29 55.01 71.55

17000 40.85 53.13 69.10 89.88 116.91

15000 56.66 73.70 95.68 124.69 162.18

NOTES: 1). VALUES WITHOUT PARENTHESES ARE SIMULATION VALUES.
2). VALUES IN PARENTHESES ARE VALUES FROM THE SMOOTHED

DYNAMIC TRANSITION MAP.
3). THE IWO VARIALBLE LINEARLY REGRESSED EQUATION FOR

MATRIX COEFFICIENT A23 IS:

A23 = -1.0*EXP(0.92911*(NSL/NSB)
4.2459*(NGL/NGB) + 6.2290)
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APPENDIX G

SIMULATION VS. DATA RUNS

This appendix contains the results of the three computer

simulations used to validate the Smoothed Dynamic Transition

Map. Figures 20-25 document the results for both NG and NS.
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